Limits...
ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis.

Singh A, Jha SK, Bagri J, Pandey GK - PLoS ONE (2015)

Bottom Line: At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants.Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance.Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.

ABSTRACT
Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions.

No MeSH data available.


Related in: MedlinePlus

Salt and mannitol stress tolerance of adult OsPP108OX plants.(A) Phenotype of 3 week old WT and OsPP108OX lines L1, L2 and L4 without stress treatment (upper row), after salt treatment (middle row) and after mannitol treatment (lower row). (B) Survival percentage of WT and different OsPP108OX lines without stress and after salt and mannitol stress for 10 days. Values are mean ± SD (n = 24 plants). *p-value <0.05 and **p-value < 0.01 for transgenic lines w.r.t. respective WT in different stresses (C) Fv/Fm ratios after stress treatment. **p-value < 0.01 and ***p-value < 0.005 for transgenic lines w.r.t. respective WT, in different stresses, and (D) Total chlorophyll content after stress treatment. Data presented is mean ± SD (n = 3). *p-value < 0.05 and **p-value < 0.01 for transgenic lines w.r.t. respective WT, in different stresses.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4401787&req=5

pone.0125168.g009: Salt and mannitol stress tolerance of adult OsPP108OX plants.(A) Phenotype of 3 week old WT and OsPP108OX lines L1, L2 and L4 without stress treatment (upper row), after salt treatment (middle row) and after mannitol treatment (lower row). (B) Survival percentage of WT and different OsPP108OX lines without stress and after salt and mannitol stress for 10 days. Values are mean ± SD (n = 24 plants). *p-value <0.05 and **p-value < 0.01 for transgenic lines w.r.t. respective WT in different stresses (C) Fv/Fm ratios after stress treatment. **p-value < 0.01 and ***p-value < 0.005 for transgenic lines w.r.t. respective WT, in different stresses, and (D) Total chlorophyll content after stress treatment. Data presented is mean ± SD (n = 3). *p-value < 0.05 and **p-value < 0.01 for transgenic lines w.r.t. respective WT, in different stresses.

Mentions: Adult transgenic Arabidopsis plants challenged with salt, drought and osmotic stresses, showed higher level of stress tolerance when compared with WT plants. 10 days after salt stress treatment most of the WT plants died and showed strong bleaching of leaves whereas, OsPP108OX transgenic plants were much healthier with subtle stress susceptible symptoms (Fig 9A). Prolonged salt stress treatment (15 days) resulted in complete bleaching of leaves in WT plants while transgenic plants were growing relatively better. For salt stress, striking differences between WT and transgenic plants could be observed even after 5 days of treatment, as approximately 50% WT stems started drooping down with death of stems, leaves were wilted and siliques became yellowish, while only about 10% transgenic plant stems showed death and stress symptoms. About 80% transgenic plants could survive after 10 days of salt treatment whereas less than 15% WT plants could survive (Fig 9B). Osmotic stress was subjected by watering the plants with high concentration of mannitol solution, and observation after 10 days showed similar results as in salt stress (Fig 9A). Majority of transgenic plants survived osmotic stress while most of the WT plants died. Other quantitative parameters for assessing the stress such as total chlorophyll content and Fv/Fm ratio were also found quite high for all three transgenic lines in comparison to WT plants (Fig 9B, 9C and 9D). Similarly, OsPP108OX plants could efficiently withstand the drought stress as distinctive visible phenotype was observed after 12 days of drought treatment (Fig 10A). Majority of WT plants died as stems drooped down, dried, siliques and flowers were wilted while large proportion of OsPP108OX transgenic plants could withstand stress and grew healthy. Water loss measurement suggested that WT plants lost relatively more amount of water at all the time points than three OsPP108OX lines (Fig 10B). Quantitative analysis revealed that more than 80% transgenic plants could survive with true leaves and vigour and they also had relatively high chlorophyll content and Fv/Fm ratio (Fig 10C, 10D and 10E). Moreover, to check the relative vigour and growth potential of the WT and transgenic plants, drought subjected plants were resupplied with water for 1 week and it was observed that plants in all three transgenic lines could recuperate from stress condition and bear healthy stems, leaf, fruits and flowers while WT plants could not regain the growth (Fig 10A and S3 Fig).


ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis.

Singh A, Jha SK, Bagri J, Pandey GK - PLoS ONE (2015)

Salt and mannitol stress tolerance of adult OsPP108OX plants.(A) Phenotype of 3 week old WT and OsPP108OX lines L1, L2 and L4 without stress treatment (upper row), after salt treatment (middle row) and after mannitol treatment (lower row). (B) Survival percentage of WT and different OsPP108OX lines without stress and after salt and mannitol stress for 10 days. Values are mean ± SD (n = 24 plants). *p-value <0.05 and **p-value < 0.01 for transgenic lines w.r.t. respective WT in different stresses (C) Fv/Fm ratios after stress treatment. **p-value < 0.01 and ***p-value < 0.005 for transgenic lines w.r.t. respective WT, in different stresses, and (D) Total chlorophyll content after stress treatment. Data presented is mean ± SD (n = 3). *p-value < 0.05 and **p-value < 0.01 for transgenic lines w.r.t. respective WT, in different stresses.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4401787&req=5

pone.0125168.g009: Salt and mannitol stress tolerance of adult OsPP108OX plants.(A) Phenotype of 3 week old WT and OsPP108OX lines L1, L2 and L4 without stress treatment (upper row), after salt treatment (middle row) and after mannitol treatment (lower row). (B) Survival percentage of WT and different OsPP108OX lines without stress and after salt and mannitol stress for 10 days. Values are mean ± SD (n = 24 plants). *p-value <0.05 and **p-value < 0.01 for transgenic lines w.r.t. respective WT in different stresses (C) Fv/Fm ratios after stress treatment. **p-value < 0.01 and ***p-value < 0.005 for transgenic lines w.r.t. respective WT, in different stresses, and (D) Total chlorophyll content after stress treatment. Data presented is mean ± SD (n = 3). *p-value < 0.05 and **p-value < 0.01 for transgenic lines w.r.t. respective WT, in different stresses.
Mentions: Adult transgenic Arabidopsis plants challenged with salt, drought and osmotic stresses, showed higher level of stress tolerance when compared with WT plants. 10 days after salt stress treatment most of the WT plants died and showed strong bleaching of leaves whereas, OsPP108OX transgenic plants were much healthier with subtle stress susceptible symptoms (Fig 9A). Prolonged salt stress treatment (15 days) resulted in complete bleaching of leaves in WT plants while transgenic plants were growing relatively better. For salt stress, striking differences between WT and transgenic plants could be observed even after 5 days of treatment, as approximately 50% WT stems started drooping down with death of stems, leaves were wilted and siliques became yellowish, while only about 10% transgenic plant stems showed death and stress symptoms. About 80% transgenic plants could survive after 10 days of salt treatment whereas less than 15% WT plants could survive (Fig 9B). Osmotic stress was subjected by watering the plants with high concentration of mannitol solution, and observation after 10 days showed similar results as in salt stress (Fig 9A). Majority of transgenic plants survived osmotic stress while most of the WT plants died. Other quantitative parameters for assessing the stress such as total chlorophyll content and Fv/Fm ratio were also found quite high for all three transgenic lines in comparison to WT plants (Fig 9B, 9C and 9D). Similarly, OsPP108OX plants could efficiently withstand the drought stress as distinctive visible phenotype was observed after 12 days of drought treatment (Fig 10A). Majority of WT plants died as stems drooped down, dried, siliques and flowers were wilted while large proportion of OsPP108OX transgenic plants could withstand stress and grew healthy. Water loss measurement suggested that WT plants lost relatively more amount of water at all the time points than three OsPP108OX lines (Fig 10B). Quantitative analysis revealed that more than 80% transgenic plants could survive with true leaves and vigour and they also had relatively high chlorophyll content and Fv/Fm ratio (Fig 10C, 10D and 10E). Moreover, to check the relative vigour and growth potential of the WT and transgenic plants, drought subjected plants were resupplied with water for 1 week and it was observed that plants in all three transgenic lines could recuperate from stress condition and bear healthy stems, leaf, fruits and flowers while WT plants could not regain the growth (Fig 10A and S3 Fig).

Bottom Line: At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants.Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance.Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.

ABSTRACT
Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions.

No MeSH data available.


Related in: MedlinePlus