Limits...
ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis.

Singh A, Jha SK, Bagri J, Pandey GK - PLoS ONE (2015)

Bottom Line: At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants.Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance.Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.

ABSTRACT
Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions.

No MeSH data available.


Related in: MedlinePlus

Quantitative analysis of abiotic stress tolerance phenotype.(A) Cotyledon emergence percentage of WT and OsPP108OX lines L1, L2, L4 on MS (control) media and MS media supplemented with different concentrations of NaCl (150mM and 175mM) and (B) mannitol (350mM and 375mM). Approximately 100 seeds were counted for each genotype. * p-value < 0.05, ** p-value <0.01 and *** p-value < 0.005 shows statistically significant cotyledon emergence for transgenic lines w.r.t WT on different stress media. (C) Fresh weight of 7 days old seedling grown on MS and different NaCl and (D) mannitol concentrations. 15 seedlings of each genotype were recorded and average of three observations is plotted on the graph ± SD. * p-value < 0.05, ** p-value < 0.01 shows statistically significant fresh weight of transgenic lines w.r.t WT on different stress media.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4401787&req=5

pone.0125168.g007: Quantitative analysis of abiotic stress tolerance phenotype.(A) Cotyledon emergence percentage of WT and OsPP108OX lines L1, L2, L4 on MS (control) media and MS media supplemented with different concentrations of NaCl (150mM and 175mM) and (B) mannitol (350mM and 375mM). Approximately 100 seeds were counted for each genotype. * p-value < 0.05, ** p-value <0.01 and *** p-value < 0.005 shows statistically significant cotyledon emergence for transgenic lines w.r.t WT on different stress media. (C) Fresh weight of 7 days old seedling grown on MS and different NaCl and (D) mannitol concentrations. 15 seedlings of each genotype were recorded and average of three observations is plotted on the graph ± SD. * p-value < 0.05, ** p-value < 0.01 shows statistically significant fresh weight of transgenic lines w.r.t WT on different stress media.

Mentions: Induction of OsPP108 transcript level under abiotic stresses such as drought and salt, and insensitivity of OsPP108OX transgenic plants towards ABA during seed germination enticed us to investigate the transgenic plant behaviour under abiotic stresses. Therefore, we performed seed germination and growth assays on MS media supplemented with NaCl and mannitol. OsPP108OX lines could germinate and survive on high salt stress (upto 175mM) and osmotic stress (upto 400mM mannitol), and hence showed tolerance to these abiotic stresses, when compared to untransformed WT (Fig 6A). Seed germination rate was much better for OsPP108OX lines than WT after 2 days of growth and more than 70% transgenic seeds could germinate on 175mM NaCl and 375mM mannitol while, ~ 45% and ~60% germination observed for WT on these stresses, respectively (Fig 6B and 6C). Analysis for cotyledon emergence after 4 days revealed that >50% transgenic seeds and only ~6% WT have emerged cotyledons on 175mM NaCl. Similarly, ~80% transgenic but only ~20% WT seeds had fully emerged cotyledon at 375mM mannitol (Fig 7A and 7B). Stress tolerance of transgenic plants was also assessed in term of fresh weight of full grown seedlings. This analysis showed that all the transgenic plants have much more weight at high salt and drought stress conditions than the WT seedlings (Fig 7C and 7D). Taken together, all these results indicated that OsPP108 overexpression confers tolerance to abiotic stresses such as salt and drought/osmotic stress in transgenic Arabidopsis.


ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis.

Singh A, Jha SK, Bagri J, Pandey GK - PLoS ONE (2015)

Quantitative analysis of abiotic stress tolerance phenotype.(A) Cotyledon emergence percentage of WT and OsPP108OX lines L1, L2, L4 on MS (control) media and MS media supplemented with different concentrations of NaCl (150mM and 175mM) and (B) mannitol (350mM and 375mM). Approximately 100 seeds were counted for each genotype. * p-value < 0.05, ** p-value <0.01 and *** p-value < 0.005 shows statistically significant cotyledon emergence for transgenic lines w.r.t WT on different stress media. (C) Fresh weight of 7 days old seedling grown on MS and different NaCl and (D) mannitol concentrations. 15 seedlings of each genotype were recorded and average of three observations is plotted on the graph ± SD. * p-value < 0.05, ** p-value < 0.01 shows statistically significant fresh weight of transgenic lines w.r.t WT on different stress media.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4401787&req=5

pone.0125168.g007: Quantitative analysis of abiotic stress tolerance phenotype.(A) Cotyledon emergence percentage of WT and OsPP108OX lines L1, L2, L4 on MS (control) media and MS media supplemented with different concentrations of NaCl (150mM and 175mM) and (B) mannitol (350mM and 375mM). Approximately 100 seeds were counted for each genotype. * p-value < 0.05, ** p-value <0.01 and *** p-value < 0.005 shows statistically significant cotyledon emergence for transgenic lines w.r.t WT on different stress media. (C) Fresh weight of 7 days old seedling grown on MS and different NaCl and (D) mannitol concentrations. 15 seedlings of each genotype were recorded and average of three observations is plotted on the graph ± SD. * p-value < 0.05, ** p-value < 0.01 shows statistically significant fresh weight of transgenic lines w.r.t WT on different stress media.
Mentions: Induction of OsPP108 transcript level under abiotic stresses such as drought and salt, and insensitivity of OsPP108OX transgenic plants towards ABA during seed germination enticed us to investigate the transgenic plant behaviour under abiotic stresses. Therefore, we performed seed germination and growth assays on MS media supplemented with NaCl and mannitol. OsPP108OX lines could germinate and survive on high salt stress (upto 175mM) and osmotic stress (upto 400mM mannitol), and hence showed tolerance to these abiotic stresses, when compared to untransformed WT (Fig 6A). Seed germination rate was much better for OsPP108OX lines than WT after 2 days of growth and more than 70% transgenic seeds could germinate on 175mM NaCl and 375mM mannitol while, ~ 45% and ~60% germination observed for WT on these stresses, respectively (Fig 6B and 6C). Analysis for cotyledon emergence after 4 days revealed that >50% transgenic seeds and only ~6% WT have emerged cotyledons on 175mM NaCl. Similarly, ~80% transgenic but only ~20% WT seeds had fully emerged cotyledon at 375mM mannitol (Fig 7A and 7B). Stress tolerance of transgenic plants was also assessed in term of fresh weight of full grown seedlings. This analysis showed that all the transgenic plants have much more weight at high salt and drought stress conditions than the WT seedlings (Fig 7C and 7D). Taken together, all these results indicated that OsPP108 overexpression confers tolerance to abiotic stresses such as salt and drought/osmotic stress in transgenic Arabidopsis.

Bottom Line: At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants.Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance.Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.

ABSTRACT
Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions.

No MeSH data available.


Related in: MedlinePlus