Limits...
Complexity measures in magnetoencephalography: measuring "disorder" in schizophrenia.

Brookes MJ, Hall EL, Robson SE, Price D, Palaniyappan L, Liddle EB, Liddle PF, Robinson SE, Morris PG - PLoS ONE (2015)

Bottom Line: These time-courses are modulated by cognitive tasks, with an increase in local neural processing characterised by localised and transient increases in entropy in the neural signal.We observe a direct but complex relationship between entropy and oscillatory amplitude, which suggests that these metrics are complementary.We demonstrate significantly increased task induced entropy change in patients (compared to controls) in multiple brain regions, including a cingulo-insula network, bilateral insula cortices and a right fronto-parietal network.

View Article: PubMed Central - PubMed

Affiliation: Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom.

ABSTRACT
This paper details a methodology which, when applied to magnetoencephalography (MEG) data, is capable of measuring the spatio-temporal dynamics of 'disorder' in the human brain. Our method, which is based upon signal entropy, shows that spatially separate brain regions (or networks) generate temporally independent entropy time-courses. These time-courses are modulated by cognitive tasks, with an increase in local neural processing characterised by localised and transient increases in entropy in the neural signal. We explore the relationship between entropy and the more established time-frequency decomposition methods, which elucidate the temporal evolution of neural oscillations. We observe a direct but complex relationship between entropy and oscillatory amplitude, which suggests that these metrics are complementary. Finally, we provide a demonstration of the clinical utility of our method, using it to shed light on aberrant neurophysiological processing in schizophrenia. We demonstrate significantly increased task induced entropy change in patients (compared to controls) in multiple brain regions, including a cingulo-insula network, bilateral insula cortices and a right fronto-parietal network. These findings demonstrate potential clinical utility for our method and support a recent hypothesis that schizophrenia can be characterised by abnormalities in the salience network (a well characterised distributed network comprising bilateral insula and cingulate cortices).

Show MeSH

Related in: MedlinePlus

Flow chart summarising the overall data analysis pipeline.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4401778&req=5

pone.0120991.g001: Flow chart summarising the overall data analysis pipeline.

Mentions: MEG data were initially inspected for artefacts. Trials containing excessive interference were removed. Participants found to have moved more than 8 mm during the scan were rejected from the study. This initial data screening left 11 healthy controls and 11 patients, who were used in subsequent analyses. Data analysis comprised multiple stages; the overall pipeline is summarised by Fig 1, and each component part is described in detail below.


Complexity measures in magnetoencephalography: measuring "disorder" in schizophrenia.

Brookes MJ, Hall EL, Robson SE, Price D, Palaniyappan L, Liddle EB, Liddle PF, Robinson SE, Morris PG - PLoS ONE (2015)

Flow chart summarising the overall data analysis pipeline.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4401778&req=5

pone.0120991.g001: Flow chart summarising the overall data analysis pipeline.
Mentions: MEG data were initially inspected for artefacts. Trials containing excessive interference were removed. Participants found to have moved more than 8 mm during the scan were rejected from the study. This initial data screening left 11 healthy controls and 11 patients, who were used in subsequent analyses. Data analysis comprised multiple stages; the overall pipeline is summarised by Fig 1, and each component part is described in detail below.

Bottom Line: These time-courses are modulated by cognitive tasks, with an increase in local neural processing characterised by localised and transient increases in entropy in the neural signal.We observe a direct but complex relationship between entropy and oscillatory amplitude, which suggests that these metrics are complementary.We demonstrate significantly increased task induced entropy change in patients (compared to controls) in multiple brain regions, including a cingulo-insula network, bilateral insula cortices and a right fronto-parietal network.

View Article: PubMed Central - PubMed

Affiliation: Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom.

ABSTRACT
This paper details a methodology which, when applied to magnetoencephalography (MEG) data, is capable of measuring the spatio-temporal dynamics of 'disorder' in the human brain. Our method, which is based upon signal entropy, shows that spatially separate brain regions (or networks) generate temporally independent entropy time-courses. These time-courses are modulated by cognitive tasks, with an increase in local neural processing characterised by localised and transient increases in entropy in the neural signal. We explore the relationship between entropy and the more established time-frequency decomposition methods, which elucidate the temporal evolution of neural oscillations. We observe a direct but complex relationship between entropy and oscillatory amplitude, which suggests that these metrics are complementary. Finally, we provide a demonstration of the clinical utility of our method, using it to shed light on aberrant neurophysiological processing in schizophrenia. We demonstrate significantly increased task induced entropy change in patients (compared to controls) in multiple brain regions, including a cingulo-insula network, bilateral insula cortices and a right fronto-parietal network. These findings demonstrate potential clinical utility for our method and support a recent hypothesis that schizophrenia can be characterised by abnormalities in the salience network (a well characterised distributed network comprising bilateral insula and cingulate cortices).

Show MeSH
Related in: MedlinePlus