Limits...
The epidemiology of chronic kidney disease in Northern Tanzania: a population-based survey.

Stanifer JW, Maro V, Egger J, Karia F, Thielman N, Turner EL, Shimbi D, Kilaweh H, Matemu O, Patel UD - PLoS ONE (2015)

Bottom Line: Half of the cases of CKD (49.1%) were not associated with any of the measured risk factors of hypertension, diabetes, or HIV.We observed a high burden of CKD in Northern Tanzania that was associated with low awareness.Although demographic, lifestyle practices including traditional medicine use, socioeconomic factors, and NCDs accounted for some of the excess CKD risk observed with urban residence, much of the increased urban prevalence remained unexplained and will further study as demographic shifts reshape sub-Saharan Africa.

View Article: PubMed Central - PubMed

Affiliation: Department of Medicine, Duke University, Durham, North Carolina, United States of America; Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America.

ABSTRACT

Background: In sub-Saharan Africa, kidney failure has a high morbidity and mortality. Despite this, population-based estimates of prevalence, potential etiologies, and awareness are not available.

Methods: Between January and June 2014, we conducted a household survey of randomly-selected adults in Northern Tanzania. To estimate prevalence we screened for CKD, which was defined as an estimated glomerular filtration rate ≤ 60 ml/min/1.73m2 and/or persistent albuminuria. We also screened for human immunodeficiency virus (HIV), diabetes, hypertension, obesity, and lifestyle practices including alcohol, tobacco, and traditional medicine use. Awareness was defined as a self-reported disease history and subsequently testing positive. We used population-based age- and gender-weights in estimating prevalence, and we used generalized linear models to explore potential risk factors associated with CKD, including living in an urban environment.

Results: We enrolled 481 adults from 346 households with a median age of 45 years. The community-based prevalence of CKD was 7.0% (95% CI 3.8-12.3), and awareness was low at 10.5% (4.7-22.0). The urban prevalence of CKD was 15.2% (9.6-23.3) while the rural prevalence was 2.0% (0.5-6.9). Half of the cases of CKD (49.1%) were not associated with any of the measured risk factors of hypertension, diabetes, or HIV. Living in an urban environment had the strongest crude (5.40; 95% CI 2.05-14.2) and adjusted prevalence risk ratio (4.80; 1.70-13.6) for CKD, and the majority (79%) of this increased risk was not explained by demographics, traditional medicine use, socioeconomic status, or co-morbid non-communicable diseases (NCDs).

Conclusions: We observed a high burden of CKD in Northern Tanzania that was associated with low awareness. Although demographic, lifestyle practices including traditional medicine use, socioeconomic factors, and NCDs accounted for some of the excess CKD risk observed with urban residence, much of the increased urban prevalence remained unexplained and will further study as demographic shifts reshape sub-Saharan Africa.

No MeSH data available.


Related in: MedlinePlus

Forest plot.The crude and fully-adjusted (model 4) prevalence risk ratios for CKD by each variable relative to the reference group for each variable.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4401757&req=5

pone.0124506.g003: Forest plot.The crude and fully-adjusted (model 4) prevalence risk ratios for CKD by each variable relative to the reference group for each variable.

Mentions: In the demographic-adjusted model (model 1), the prevalence risk ratio for CKD among urban residents was 6.06 (2.15–17.1). The addition of lifestyle practices to the adjusted-model (model 2) had little effect on the PRR for urbanicity while socioeconomic indicators and the presence of a co-morbid condition (diabetes, hypertension, HIV, obesity, or history of heart disease) accounted for 21% of the excess urban risk. In the fully-adjusted model (model 4), the prevalence risk ratio for CKD among urban residents was 4.80 (1.70–13.6), and the attributable prevalence risk of CKD for the urban population by unmeasured factors was 79%. The strong relationship between professional occupation (PRR = 2.64; 1.19–5.86) and HIV (PRR = 2.60; 0.66–2.18) and CKD remained in the fully-adjusted model (Fig 3). In this model, older participants tended to have higher prevalence estimates, and traditional medicine use also retained a strong association with CKD (PRR = 1.78; 0.92–3.45).


The epidemiology of chronic kidney disease in Northern Tanzania: a population-based survey.

Stanifer JW, Maro V, Egger J, Karia F, Thielman N, Turner EL, Shimbi D, Kilaweh H, Matemu O, Patel UD - PLoS ONE (2015)

Forest plot.The crude and fully-adjusted (model 4) prevalence risk ratios for CKD by each variable relative to the reference group for each variable.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4401757&req=5

pone.0124506.g003: Forest plot.The crude and fully-adjusted (model 4) prevalence risk ratios for CKD by each variable relative to the reference group for each variable.
Mentions: In the demographic-adjusted model (model 1), the prevalence risk ratio for CKD among urban residents was 6.06 (2.15–17.1). The addition of lifestyle practices to the adjusted-model (model 2) had little effect on the PRR for urbanicity while socioeconomic indicators and the presence of a co-morbid condition (diabetes, hypertension, HIV, obesity, or history of heart disease) accounted for 21% of the excess urban risk. In the fully-adjusted model (model 4), the prevalence risk ratio for CKD among urban residents was 4.80 (1.70–13.6), and the attributable prevalence risk of CKD for the urban population by unmeasured factors was 79%. The strong relationship between professional occupation (PRR = 2.64; 1.19–5.86) and HIV (PRR = 2.60; 0.66–2.18) and CKD remained in the fully-adjusted model (Fig 3). In this model, older participants tended to have higher prevalence estimates, and traditional medicine use also retained a strong association with CKD (PRR = 1.78; 0.92–3.45).

Bottom Line: Half of the cases of CKD (49.1%) were not associated with any of the measured risk factors of hypertension, diabetes, or HIV.We observed a high burden of CKD in Northern Tanzania that was associated with low awareness.Although demographic, lifestyle practices including traditional medicine use, socioeconomic factors, and NCDs accounted for some of the excess CKD risk observed with urban residence, much of the increased urban prevalence remained unexplained and will further study as demographic shifts reshape sub-Saharan Africa.

View Article: PubMed Central - PubMed

Affiliation: Department of Medicine, Duke University, Durham, North Carolina, United States of America; Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America.

ABSTRACT

Background: In sub-Saharan Africa, kidney failure has a high morbidity and mortality. Despite this, population-based estimates of prevalence, potential etiologies, and awareness are not available.

Methods: Between January and June 2014, we conducted a household survey of randomly-selected adults in Northern Tanzania. To estimate prevalence we screened for CKD, which was defined as an estimated glomerular filtration rate ≤ 60 ml/min/1.73m2 and/or persistent albuminuria. We also screened for human immunodeficiency virus (HIV), diabetes, hypertension, obesity, and lifestyle practices including alcohol, tobacco, and traditional medicine use. Awareness was defined as a self-reported disease history and subsequently testing positive. We used population-based age- and gender-weights in estimating prevalence, and we used generalized linear models to explore potential risk factors associated with CKD, including living in an urban environment.

Results: We enrolled 481 adults from 346 households with a median age of 45 years. The community-based prevalence of CKD was 7.0% (95% CI 3.8-12.3), and awareness was low at 10.5% (4.7-22.0). The urban prevalence of CKD was 15.2% (9.6-23.3) while the rural prevalence was 2.0% (0.5-6.9). Half of the cases of CKD (49.1%) were not associated with any of the measured risk factors of hypertension, diabetes, or HIV. Living in an urban environment had the strongest crude (5.40; 95% CI 2.05-14.2) and adjusted prevalence risk ratio (4.80; 1.70-13.6) for CKD, and the majority (79%) of this increased risk was not explained by demographics, traditional medicine use, socioeconomic status, or co-morbid non-communicable diseases (NCDs).

Conclusions: We observed a high burden of CKD in Northern Tanzania that was associated with low awareness. Although demographic, lifestyle practices including traditional medicine use, socioeconomic factors, and NCDs accounted for some of the excess CKD risk observed with urban residence, much of the increased urban prevalence remained unexplained and will further study as demographic shifts reshape sub-Saharan Africa.

No MeSH data available.


Related in: MedlinePlus