Limits...
Using the Morris water maze to assess spatial learning and memory in weanling mice.

Barnhart CD, Yang D, Lein PJ - PLoS ONE (2015)

Bottom Line: However, Morris water maze studies with mice have principally been performed using adult animals, which preclude studies of critical neurodevelopmental periods when the cellular and molecular substrates of learning and memory are formed.While weanling rats have been successfully trained in the Morris water maze, there have been few attempts to test weanling mice in this behavioral paradigm even though mice offer significant experimental advantages because of the availability of many genetically modified strains.These findings demonstrate that the Morris water maze can be used to assess spatial learning and memory in weanling mice, providing a potentially powerful experimental approach for examining the influence of genes, environmental factors and their interactions on the development of learning and memory.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America.

ABSTRACT
Mouse models have been indispensable for elucidating normal and pathological processes that influence learning and memory. A widely used method for assessing these cognitive processes in mice is the Morris water maze, a classic test for examining spatial learning and memory. However, Morris water maze studies with mice have principally been performed using adult animals, which preclude studies of critical neurodevelopmental periods when the cellular and molecular substrates of learning and memory are formed. While weanling rats have been successfully trained in the Morris water maze, there have been few attempts to test weanling mice in this behavioral paradigm even though mice offer significant experimental advantages because of the availability of many genetically modified strains. Here, we present experimental evidence that weanling mice can be trained in the Morris water maze beginning on postnatal day 24. Maze-trained weanling mice exhibit significant improvements in spatial learning over the training period and results of the probe trial indicate the development of spatial memory. There were no sex differences in the animals' performance in these tasks. In addition, molecular biomarkers of synaptic plasticity are upregulated in maze-trained mice at the transcript level. These findings demonstrate that the Morris water maze can be used to assess spatial learning and memory in weanling mice, providing a potentially powerful experimental approach for examining the influence of genes, environmental factors and their interactions on the development of learning and memory.

No MeSH data available.


Related in: MedlinePlus

MWM training increases transcription of genes associated with synaptic plasticity in multiple brain regions.Transcript levels of spinophilin (Spn), activity-regulated cytoskeleton-associated protein (ARC), neurogranin (RC3), Homer1a and Homer1b/c were analyzed in total RNA harvested from the cortex, cerebellum, and hippocampus of weanling mice after behavioral studies were completed. Data are presented as fold-change in transcript expression relative to non-maze-trained littermates as calculated by the Pfaffl equation, normalized to the housekeeping gene 18S rRNA (n = 9–12 animals per group). The dashed line represents a fold-change of 1, which indicates no difference in gene expression between MWM-trained animals and untrained littermate controls.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4401674&req=5

pone.0124521.g004: MWM training increases transcription of genes associated with synaptic plasticity in multiple brain regions.Transcript levels of spinophilin (Spn), activity-regulated cytoskeleton-associated protein (ARC), neurogranin (RC3), Homer1a and Homer1b/c were analyzed in total RNA harvested from the cortex, cerebellum, and hippocampus of weanling mice after behavioral studies were completed. Data are presented as fold-change in transcript expression relative to non-maze-trained littermates as calculated by the Pfaffl equation, normalized to the housekeeping gene 18S rRNA (n = 9–12 animals per group). The dashed line represents a fold-change of 1, which indicates no difference in gene expression between MWM-trained animals and untrained littermate controls.

Mentions: Calculation of the fold-change in Spn, ARC, and RC3 mRNA using the Pfaffl equation indicated that all three transcripts were significantly increased in the cortex, cerebellum, and hippocampus of MWM-trained animals compared to untrained littermates (Fig 4). Further analyses using the REST2009 software similarly determined that MWM training significantly increased the expression of Spn, ARC and RC3 mRNA (Table 2). In contrast, MWM training did not significantly change transcript levels of Homer1a or Homer1b/c in any of the three brain regions investigated (Fig 4 and Table 2).


Using the Morris water maze to assess spatial learning and memory in weanling mice.

Barnhart CD, Yang D, Lein PJ - PLoS ONE (2015)

MWM training increases transcription of genes associated with synaptic plasticity in multiple brain regions.Transcript levels of spinophilin (Spn), activity-regulated cytoskeleton-associated protein (ARC), neurogranin (RC3), Homer1a and Homer1b/c were analyzed in total RNA harvested from the cortex, cerebellum, and hippocampus of weanling mice after behavioral studies were completed. Data are presented as fold-change in transcript expression relative to non-maze-trained littermates as calculated by the Pfaffl equation, normalized to the housekeeping gene 18S rRNA (n = 9–12 animals per group). The dashed line represents a fold-change of 1, which indicates no difference in gene expression between MWM-trained animals and untrained littermate controls.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4401674&req=5

pone.0124521.g004: MWM training increases transcription of genes associated with synaptic plasticity in multiple brain regions.Transcript levels of spinophilin (Spn), activity-regulated cytoskeleton-associated protein (ARC), neurogranin (RC3), Homer1a and Homer1b/c were analyzed in total RNA harvested from the cortex, cerebellum, and hippocampus of weanling mice after behavioral studies were completed. Data are presented as fold-change in transcript expression relative to non-maze-trained littermates as calculated by the Pfaffl equation, normalized to the housekeeping gene 18S rRNA (n = 9–12 animals per group). The dashed line represents a fold-change of 1, which indicates no difference in gene expression between MWM-trained animals and untrained littermate controls.
Mentions: Calculation of the fold-change in Spn, ARC, and RC3 mRNA using the Pfaffl equation indicated that all three transcripts were significantly increased in the cortex, cerebellum, and hippocampus of MWM-trained animals compared to untrained littermates (Fig 4). Further analyses using the REST2009 software similarly determined that MWM training significantly increased the expression of Spn, ARC and RC3 mRNA (Table 2). In contrast, MWM training did not significantly change transcript levels of Homer1a or Homer1b/c in any of the three brain regions investigated (Fig 4 and Table 2).

Bottom Line: However, Morris water maze studies with mice have principally been performed using adult animals, which preclude studies of critical neurodevelopmental periods when the cellular and molecular substrates of learning and memory are formed.While weanling rats have been successfully trained in the Morris water maze, there have been few attempts to test weanling mice in this behavioral paradigm even though mice offer significant experimental advantages because of the availability of many genetically modified strains.These findings demonstrate that the Morris water maze can be used to assess spatial learning and memory in weanling mice, providing a potentially powerful experimental approach for examining the influence of genes, environmental factors and their interactions on the development of learning and memory.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America.

ABSTRACT
Mouse models have been indispensable for elucidating normal and pathological processes that influence learning and memory. A widely used method for assessing these cognitive processes in mice is the Morris water maze, a classic test for examining spatial learning and memory. However, Morris water maze studies with mice have principally been performed using adult animals, which preclude studies of critical neurodevelopmental periods when the cellular and molecular substrates of learning and memory are formed. While weanling rats have been successfully trained in the Morris water maze, there have been few attempts to test weanling mice in this behavioral paradigm even though mice offer significant experimental advantages because of the availability of many genetically modified strains. Here, we present experimental evidence that weanling mice can be trained in the Morris water maze beginning on postnatal day 24. Maze-trained weanling mice exhibit significant improvements in spatial learning over the training period and results of the probe trial indicate the development of spatial memory. There were no sex differences in the animals' performance in these tasks. In addition, molecular biomarkers of synaptic plasticity are upregulated in maze-trained mice at the transcript level. These findings demonstrate that the Morris water maze can be used to assess spatial learning and memory in weanling mice, providing a potentially powerful experimental approach for examining the influence of genes, environmental factors and their interactions on the development of learning and memory.

No MeSH data available.


Related in: MedlinePlus