Limits...
Physiological and proteomics analyses reveal the mechanism of Eichhornia crassipes tolerance to high-concentration cadmium stress compared with Pistia stratiotes.

Li X, Zhou Y, Yang Y, Yang S, Sun X, Yang Y - PLoS ONE (2015)

Bottom Line: Cadmium (Cd) pollution is an environmental problem worldwide.As a result, E. crassipes could maintain more stable physiological parameters than P. stratiotes.In addition, antioxidant enzymes played important roles in ROS detoxification.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; University of Chinese Academy of Sciences, Beijing 100049, China.

ABSTRACT
Cadmium (Cd) pollution is an environmental problem worldwide. Phytoremediation is a convenient method of removing Cd from both soil and water, but its efficiency is still low, especially in aquatic environments. Scientists have been trying to improve the ability of plants to absorb and accumulate Cd based on interactions between plants and Cd, especially the mechanism by which plants resist Cd. Eichhornia crassipes and Pistia stratiotes are aquatic plants commonly used in the phytoremediation of heavy metals. In the present study, we conducted physiological and biochemical analyses to compare the resistance of these two species to Cd stress at 100 mg/L. E. crassipes showed stronger resistance and was therefore used for subsequent comparative proteomics to explore the potential mechanism of E. crassipes tolerance to Cd stress at the protein level. The expression patterns of proteins in different functional categories revealed that the physiological activities and metabolic processes of E. crassipes were affected by exposure to Cd stress. However, when some proteins related to these processes were negatively inhibited, some analogous proteins were induced to compensate for the corresponding functions. As a result, E. crassipes could maintain more stable physiological parameters than P. stratiotes. Many stress-resistance substances and proteins, such as proline and heat shock proteins (HSPs) and post translational modifications, were found to be involved in the protection and repair of functional proteins. In addition, antioxidant enzymes played important roles in ROS detoxification. These findings will facilitate further understanding of the potential mechanism of plant response to Cd stress at the protein level.

No MeSH data available.


Related in: MedlinePlus

Functional classification of the identified proteins.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4401520&req=5

pone.0124304.g006: Functional classification of the identified proteins.

Mentions: The identified proteins could be classified into nine functional groups: photosynthesis [putative rubisco subunit binding-protein alpha subunit precursor (spot 6), predicted ribulose bisphosphate carboxylase/oxygenase activase 1, chloroplastic-like (spot 7), ribulose-1,5-bisphosphate carboxylase/oxygenase activase 1 (spot 12), RuBisCO activase (spot 14), fructose-bisphosphate aldolase, chloroplast precursor, putative, expressed (spot 24), chloroplast stem-loop binding protein-41 (spot 26), chloroplast photosynthetic water oxidation complex 33kDa subunit precursor (spot 34), OEE1 (spot 35), predicted carbonic anhydrase, chloroplastic-like (spot 45), ribulose bisphosphate carboxylase (spot 59), and thylakoid luminal 19 kDa protein (spot 52)], growth and development [maturase K (spot 5), actin (spot 15), and old-yellow-enzyme homolog (spot 18)], metabolism processes, defense response [chloroplast heat shock protein 70–1 (spot 2), putative heat shock protein (spot 3), and 70 kDa heat shock cognate protein 2 (spot 4), 14-3-3 family protein (spot 33), and 2-oxoglutarate-iron(II)-dependent oxygenase (spot 42)], antioxidant enzymes [cytosolic ascorbate peroxidase (spot 43), 2-cys-peroxiredoxin (spot 51), and chloroplast copper/zinc superoxide dismutase (spot 55)], ion transport and regulation [cation efflux family protein isoform 2 (spot 21) and calcineurin B-like protein (spot 48)], transcription and translation [elongation factor tu, putative (spot 9), putative peptidyl-prolyl cis-trans isomerase (spot 10), chloroplast translational elongation factor Tu (spot 17), nucleic acid binding protein1 (spot 31), putative elongation factor (spot 32), DNA-binding storekeeper protein-related transcriptional regulator (spot 39), and small ribosomal protein subunit 4 (spot 54)], protein post-translational modification [predicted phosphoglycolate phosphatase-like (spot 38), predicted methyltransferase-like protein 23-like isoform X1 (spot 49), and ubiquitin-like superfamily protein (spot 57)] and proteins with other functions [ALA-interacting subunit 5 (spot 13), zinc knuckle family protein (spot 50), and AP3-2 type 1 (spot 53)] (Table 1). In particular, the proteins involved in metabolism processes could be further divided into three categories: biosynthesis and degradation [Glutamine synthetase (spot 16), beta-cyanoalanine synthase (spot 22), malate dehydrogenase (spot 23), predicted aminomethyl transferase, mitochondrial-like (spot 27), xyloglucantransglusylase/hydrolase 1 (spot 37), cytosolic triosephosphate isomerase (spot 44), triosephosphate isomerase, cytosolic (spot 47), and granule-bound starch synthase precursor (spot 58)], energy related [AMP deaminase family protein (spot 11), ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (spot 40), predicted probable ATP synthase 24 kDa subunit, mitochondrial (spot 41), and ATP synthase CF1 epsilon subunit (chloroplast) (spot 56)] and oxidation-reduction process [glycine dehydrogenase, putative (spot 1), glycine dehydrogenase, putative (spot 8), plastidic aldolase (spot 19), plastidic aldolase family protein (spot 20), predicted glyceraldehyde-3-phosphate dehydrogenase A, chloroplastic-like (spot 25), isoflavone reductase-like protein (spot 28), phenylcoumaran benzylic ether reductase (spot 29), pterocarpan reductase (spot 30), oxidoreductase, aldo/keto reductase family protein, expressed isoform 1 (spot 36), and peptide methionine sulfoxide reductase (spot 46)] (Table 1). Among all the identified proteins, the functional group of metabolism processes (37.3%) accounted for the largest number of differentially expressed proteins (Fig 6). In addition, proteins related to photosynthesis (18.6%), transcription and translation (11.9%), and defense response (8.5%) also constituted larger proportions of the differential proteins (Fig 6).


Physiological and proteomics analyses reveal the mechanism of Eichhornia crassipes tolerance to high-concentration cadmium stress compared with Pistia stratiotes.

Li X, Zhou Y, Yang Y, Yang S, Sun X, Yang Y - PLoS ONE (2015)

Functional classification of the identified proteins.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4401520&req=5

pone.0124304.g006: Functional classification of the identified proteins.
Mentions: The identified proteins could be classified into nine functional groups: photosynthesis [putative rubisco subunit binding-protein alpha subunit precursor (spot 6), predicted ribulose bisphosphate carboxylase/oxygenase activase 1, chloroplastic-like (spot 7), ribulose-1,5-bisphosphate carboxylase/oxygenase activase 1 (spot 12), RuBisCO activase (spot 14), fructose-bisphosphate aldolase, chloroplast precursor, putative, expressed (spot 24), chloroplast stem-loop binding protein-41 (spot 26), chloroplast photosynthetic water oxidation complex 33kDa subunit precursor (spot 34), OEE1 (spot 35), predicted carbonic anhydrase, chloroplastic-like (spot 45), ribulose bisphosphate carboxylase (spot 59), and thylakoid luminal 19 kDa protein (spot 52)], growth and development [maturase K (spot 5), actin (spot 15), and old-yellow-enzyme homolog (spot 18)], metabolism processes, defense response [chloroplast heat shock protein 70–1 (spot 2), putative heat shock protein (spot 3), and 70 kDa heat shock cognate protein 2 (spot 4), 14-3-3 family protein (spot 33), and 2-oxoglutarate-iron(II)-dependent oxygenase (spot 42)], antioxidant enzymes [cytosolic ascorbate peroxidase (spot 43), 2-cys-peroxiredoxin (spot 51), and chloroplast copper/zinc superoxide dismutase (spot 55)], ion transport and regulation [cation efflux family protein isoform 2 (spot 21) and calcineurin B-like protein (spot 48)], transcription and translation [elongation factor tu, putative (spot 9), putative peptidyl-prolyl cis-trans isomerase (spot 10), chloroplast translational elongation factor Tu (spot 17), nucleic acid binding protein1 (spot 31), putative elongation factor (spot 32), DNA-binding storekeeper protein-related transcriptional regulator (spot 39), and small ribosomal protein subunit 4 (spot 54)], protein post-translational modification [predicted phosphoglycolate phosphatase-like (spot 38), predicted methyltransferase-like protein 23-like isoform X1 (spot 49), and ubiquitin-like superfamily protein (spot 57)] and proteins with other functions [ALA-interacting subunit 5 (spot 13), zinc knuckle family protein (spot 50), and AP3-2 type 1 (spot 53)] (Table 1). In particular, the proteins involved in metabolism processes could be further divided into three categories: biosynthesis and degradation [Glutamine synthetase (spot 16), beta-cyanoalanine synthase (spot 22), malate dehydrogenase (spot 23), predicted aminomethyl transferase, mitochondrial-like (spot 27), xyloglucantransglusylase/hydrolase 1 (spot 37), cytosolic triosephosphate isomerase (spot 44), triosephosphate isomerase, cytosolic (spot 47), and granule-bound starch synthase precursor (spot 58)], energy related [AMP deaminase family protein (spot 11), ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (spot 40), predicted probable ATP synthase 24 kDa subunit, mitochondrial (spot 41), and ATP synthase CF1 epsilon subunit (chloroplast) (spot 56)] and oxidation-reduction process [glycine dehydrogenase, putative (spot 1), glycine dehydrogenase, putative (spot 8), plastidic aldolase (spot 19), plastidic aldolase family protein (spot 20), predicted glyceraldehyde-3-phosphate dehydrogenase A, chloroplastic-like (spot 25), isoflavone reductase-like protein (spot 28), phenylcoumaran benzylic ether reductase (spot 29), pterocarpan reductase (spot 30), oxidoreductase, aldo/keto reductase family protein, expressed isoform 1 (spot 36), and peptide methionine sulfoxide reductase (spot 46)] (Table 1). Among all the identified proteins, the functional group of metabolism processes (37.3%) accounted for the largest number of differentially expressed proteins (Fig 6). In addition, proteins related to photosynthesis (18.6%), transcription and translation (11.9%), and defense response (8.5%) also constituted larger proportions of the differential proteins (Fig 6).

Bottom Line: Cadmium (Cd) pollution is an environmental problem worldwide.As a result, E. crassipes could maintain more stable physiological parameters than P. stratiotes.In addition, antioxidant enzymes played important roles in ROS detoxification.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; University of Chinese Academy of Sciences, Beijing 100049, China.

ABSTRACT
Cadmium (Cd) pollution is an environmental problem worldwide. Phytoremediation is a convenient method of removing Cd from both soil and water, but its efficiency is still low, especially in aquatic environments. Scientists have been trying to improve the ability of plants to absorb and accumulate Cd based on interactions between plants and Cd, especially the mechanism by which plants resist Cd. Eichhornia crassipes and Pistia stratiotes are aquatic plants commonly used in the phytoremediation of heavy metals. In the present study, we conducted physiological and biochemical analyses to compare the resistance of these two species to Cd stress at 100 mg/L. E. crassipes showed stronger resistance and was therefore used for subsequent comparative proteomics to explore the potential mechanism of E. crassipes tolerance to Cd stress at the protein level. The expression patterns of proteins in different functional categories revealed that the physiological activities and metabolic processes of E. crassipes were affected by exposure to Cd stress. However, when some proteins related to these processes were negatively inhibited, some analogous proteins were induced to compensate for the corresponding functions. As a result, E. crassipes could maintain more stable physiological parameters than P. stratiotes. Many stress-resistance substances and proteins, such as proline and heat shock proteins (HSPs) and post translational modifications, were found to be involved in the protection and repair of functional proteins. In addition, antioxidant enzymes played important roles in ROS detoxification. These findings will facilitate further understanding of the potential mechanism of plant response to Cd stress at the protein level.

No MeSH data available.


Related in: MedlinePlus