Limits...
Physiological and proteomics analyses reveal the mechanism of Eichhornia crassipes tolerance to high-concentration cadmium stress compared with Pistia stratiotes.

Li X, Zhou Y, Yang Y, Yang S, Sun X, Yang Y - PLoS ONE (2015)

Bottom Line: Cadmium (Cd) pollution is an environmental problem worldwide.As a result, E. crassipes could maintain more stable physiological parameters than P. stratiotes.In addition, antioxidant enzymes played important roles in ROS detoxification.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; University of Chinese Academy of Sciences, Beijing 100049, China.

ABSTRACT
Cadmium (Cd) pollution is an environmental problem worldwide. Phytoremediation is a convenient method of removing Cd from both soil and water, but its efficiency is still low, especially in aquatic environments. Scientists have been trying to improve the ability of plants to absorb and accumulate Cd based on interactions between plants and Cd, especially the mechanism by which plants resist Cd. Eichhornia crassipes and Pistia stratiotes are aquatic plants commonly used in the phytoremediation of heavy metals. In the present study, we conducted physiological and biochemical analyses to compare the resistance of these two species to Cd stress at 100 mg/L. E. crassipes showed stronger resistance and was therefore used for subsequent comparative proteomics to explore the potential mechanism of E. crassipes tolerance to Cd stress at the protein level. The expression patterns of proteins in different functional categories revealed that the physiological activities and metabolic processes of E. crassipes were affected by exposure to Cd stress. However, when some proteins related to these processes were negatively inhibited, some analogous proteins were induced to compensate for the corresponding functions. As a result, E. crassipes could maintain more stable physiological parameters than P. stratiotes. Many stress-resistance substances and proteins, such as proline and heat shock proteins (HSPs) and post translational modifications, were found to be involved in the protection and repair of functional proteins. In addition, antioxidant enzymes played important roles in ROS detoxification. These findings will facilitate further understanding of the potential mechanism of plant response to Cd stress at the protein level.

No MeSH data available.


Related in: MedlinePlus

Changes in photosynthetic characteristics and reactive oxygen species (ROS) of E. crassipes and P. stratiotes exposed to 100 mg/L Cd for different times.A: Photosynthetic rate change. B: Stomatal conductance change. C: In situ detection of H2O2 and O2-. Data are presented as mean ± standard error. Different letters following mean values indicate significant differences (Tukey’s test, P<0.05).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4401520&req=5

pone.0124304.g002: Changes in photosynthetic characteristics and reactive oxygen species (ROS) of E. crassipes and P. stratiotes exposed to 100 mg/L Cd for different times.A: Photosynthetic rate change. B: Stomatal conductance change. C: In situ detection of H2O2 and O2-. Data are presented as mean ± standard error. Different letters following mean values indicate significant differences (Tukey’s test, P<0.05).

Mentions: To investigate the differential response to Cd stress between E. crassipes and P. stratiotes from the physiological level, we measured the maximum quantum yield (ratio of variable to maximum fluorescence; Fv/Fm) of photosystem II (PS II). In the present study, Fv/Fm decreased in response to Cd treatment in both species (Fig 1B and 1C), but there were significant differences in the changes between species. Specifically, the Fv/Fm of E. crassipes decreased by 2.5%, 5.7%, and 8.4% after 2, 3, and 5 d of treatment, respectively, whereas that of P. stratiotes decreased by 8.5%, 27.9%, and 51.4% relative to the corresponding controls (Fig 1C). Similarly, photosynthesis showed different reductions between species. Specifically, the photosynthetic rate and stomatal conductance were reduced in response to Cd stress in E. crassipes (Fig 2A and 2B), but no differences were observed from 2 to 5 d of treatment (Fig 2A and 2B). However, both the photosynthetic rate and stomatal conductance decreased sharply in P. stratiotes following Cd exposure, with significant differences being observed at different time points (Fig 2A and 2B).


Physiological and proteomics analyses reveal the mechanism of Eichhornia crassipes tolerance to high-concentration cadmium stress compared with Pistia stratiotes.

Li X, Zhou Y, Yang Y, Yang S, Sun X, Yang Y - PLoS ONE (2015)

Changes in photosynthetic characteristics and reactive oxygen species (ROS) of E. crassipes and P. stratiotes exposed to 100 mg/L Cd for different times.A: Photosynthetic rate change. B: Stomatal conductance change. C: In situ detection of H2O2 and O2-. Data are presented as mean ± standard error. Different letters following mean values indicate significant differences (Tukey’s test, P<0.05).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4401520&req=5

pone.0124304.g002: Changes in photosynthetic characteristics and reactive oxygen species (ROS) of E. crassipes and P. stratiotes exposed to 100 mg/L Cd for different times.A: Photosynthetic rate change. B: Stomatal conductance change. C: In situ detection of H2O2 and O2-. Data are presented as mean ± standard error. Different letters following mean values indicate significant differences (Tukey’s test, P<0.05).
Mentions: To investigate the differential response to Cd stress between E. crassipes and P. stratiotes from the physiological level, we measured the maximum quantum yield (ratio of variable to maximum fluorescence; Fv/Fm) of photosystem II (PS II). In the present study, Fv/Fm decreased in response to Cd treatment in both species (Fig 1B and 1C), but there were significant differences in the changes between species. Specifically, the Fv/Fm of E. crassipes decreased by 2.5%, 5.7%, and 8.4% after 2, 3, and 5 d of treatment, respectively, whereas that of P. stratiotes decreased by 8.5%, 27.9%, and 51.4% relative to the corresponding controls (Fig 1C). Similarly, photosynthesis showed different reductions between species. Specifically, the photosynthetic rate and stomatal conductance were reduced in response to Cd stress in E. crassipes (Fig 2A and 2B), but no differences were observed from 2 to 5 d of treatment (Fig 2A and 2B). However, both the photosynthetic rate and stomatal conductance decreased sharply in P. stratiotes following Cd exposure, with significant differences being observed at different time points (Fig 2A and 2B).

Bottom Line: Cadmium (Cd) pollution is an environmental problem worldwide.As a result, E. crassipes could maintain more stable physiological parameters than P. stratiotes.In addition, antioxidant enzymes played important roles in ROS detoxification.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; University of Chinese Academy of Sciences, Beijing 100049, China.

ABSTRACT
Cadmium (Cd) pollution is an environmental problem worldwide. Phytoremediation is a convenient method of removing Cd from both soil and water, but its efficiency is still low, especially in aquatic environments. Scientists have been trying to improve the ability of plants to absorb and accumulate Cd based on interactions between plants and Cd, especially the mechanism by which plants resist Cd. Eichhornia crassipes and Pistia stratiotes are aquatic plants commonly used in the phytoremediation of heavy metals. In the present study, we conducted physiological and biochemical analyses to compare the resistance of these two species to Cd stress at 100 mg/L. E. crassipes showed stronger resistance and was therefore used for subsequent comparative proteomics to explore the potential mechanism of E. crassipes tolerance to Cd stress at the protein level. The expression patterns of proteins in different functional categories revealed that the physiological activities and metabolic processes of E. crassipes were affected by exposure to Cd stress. However, when some proteins related to these processes were negatively inhibited, some analogous proteins were induced to compensate for the corresponding functions. As a result, E. crassipes could maintain more stable physiological parameters than P. stratiotes. Many stress-resistance substances and proteins, such as proline and heat shock proteins (HSPs) and post translational modifications, were found to be involved in the protection and repair of functional proteins. In addition, antioxidant enzymes played important roles in ROS detoxification. These findings will facilitate further understanding of the potential mechanism of plant response to Cd stress at the protein level.

No MeSH data available.


Related in: MedlinePlus