Limits...
Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate.

Wang W, Zhang H, Tian C, Meng X - Nanoscale Res Lett (2015)

Bottom Line: Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature.The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures.The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical and Mechanical Engineering, Xidian University, No. 2 South Taibai Road, Xi'an, Shaanxi 710071 China ; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, No. 99 Yanxiang Road, Xi'an, Shaanxi 710054 China ; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

ABSTRACT
Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

No MeSH data available.


Related in: MedlinePlus

Temperature variation of solid wall for the case with a 150 K heated source.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4401484&req=5

Fig8: Temperature variation of solid wall for the case with a 150 K heated source.

Mentions: Another case of low superheated temperature is investigated subsequently in which the solid wall is heated to 150 K, where the initial temperature difference between the solid wall and the argon regions is more moderate than that of the above case described in the ‘Case of high superheated temperature’ section. The wall temperature curves of all surfaces are given in Figure 8. It is obvious that the solid wall temperatures rapidly reach the given temperature of 150 K, which indicates that the solid wall has good heat conductivity. Figure 9 shows the variation curves of the argon region temperatures for all kinds of surfaces. Except for the flat surface of surface 0, the argon temperatures increase rapidly and finally reach a balanced state when the solid wall is heated to 150 K. It is a fact that the vapor is formed locally near the heated solid surface and gradually moves up to the vapor region and unlike the high superheated temperature case. Compared with the curves shown in Figure 3, when the solid wall is heated to 150 K, all the argon temperatures rise much slower than at 310 K.Figure 8


Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate.

Wang W, Zhang H, Tian C, Meng X - Nanoscale Res Lett (2015)

Temperature variation of solid wall for the case with a 150 K heated source.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4401484&req=5

Fig8: Temperature variation of solid wall for the case with a 150 K heated source.
Mentions: Another case of low superheated temperature is investigated subsequently in which the solid wall is heated to 150 K, where the initial temperature difference between the solid wall and the argon regions is more moderate than that of the above case described in the ‘Case of high superheated temperature’ section. The wall temperature curves of all surfaces are given in Figure 8. It is obvious that the solid wall temperatures rapidly reach the given temperature of 150 K, which indicates that the solid wall has good heat conductivity. Figure 9 shows the variation curves of the argon region temperatures for all kinds of surfaces. Except for the flat surface of surface 0, the argon temperatures increase rapidly and finally reach a balanced state when the solid wall is heated to 150 K. It is a fact that the vapor is formed locally near the heated solid surface and gradually moves up to the vapor region and unlike the high superheated temperature case. Compared with the curves shown in Figure 3, when the solid wall is heated to 150 K, all the argon temperatures rise much slower than at 310 K.Figure 8

Bottom Line: Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature.The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures.The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical and Mechanical Engineering, Xidian University, No. 2 South Taibai Road, Xi'an, Shaanxi 710071 China ; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, No. 99 Yanxiang Road, Xi'an, Shaanxi 710054 China ; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

ABSTRACT
Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

No MeSH data available.


Related in: MedlinePlus