Limits...
Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate.

Wang W, Zhang H, Tian C, Meng X - Nanoscale Res Lett (2015)

Bottom Line: Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature.The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures.The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical and Mechanical Engineering, Xidian University, No. 2 South Taibai Road, Xi'an, Shaanxi 710071 China ; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, No. 99 Yanxiang Road, Xi'an, Shaanxi 710054 China ; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

ABSTRACT
Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

No MeSH data available.


Related in: MedlinePlus

Net evaporation number for the case with a 310 K heated source.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4401484&req=5

Fig7: Net evaporation number for the case with a 310 K heated source.

Mentions: Figure 7 illustrates the net evaporation number for all the surfaces at different times. In order to give an insight into the evaporation rate in the fast evaporation region, a subgraph is made in this figure. The net evaporation number rate is calculated by counting the change of argon atoms in the vapor region. It can be obtained that the evaporation increases almost linearly for surfaces 1, 2, and 3 at the beginning of the simulation and then almost keeps constant. On the other hand, the evaporation number is less than 2,000 during t = 0 to 6 ns on the flat surface, which is much lower than that of the nanostructured surface. Therefore, the nanostructures have the ability to enhance the evaporation rate of the liquid film since the thermal resistance at the solid-liquid interface can be reduced by the nanostructures. For surface 1, the total number of liquid atoms is more than those of surface 2 and surface 3, which leads to higher net evaporation number.Figure 7


Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate.

Wang W, Zhang H, Tian C, Meng X - Nanoscale Res Lett (2015)

Net evaporation number for the case with a 310 K heated source.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4401484&req=5

Fig7: Net evaporation number for the case with a 310 K heated source.
Mentions: Figure 7 illustrates the net evaporation number for all the surfaces at different times. In order to give an insight into the evaporation rate in the fast evaporation region, a subgraph is made in this figure. The net evaporation number rate is calculated by counting the change of argon atoms in the vapor region. It can be obtained that the evaporation increases almost linearly for surfaces 1, 2, and 3 at the beginning of the simulation and then almost keeps constant. On the other hand, the evaporation number is less than 2,000 during t = 0 to 6 ns on the flat surface, which is much lower than that of the nanostructured surface. Therefore, the nanostructures have the ability to enhance the evaporation rate of the liquid film since the thermal resistance at the solid-liquid interface can be reduced by the nanostructures. For surface 1, the total number of liquid atoms is more than those of surface 2 and surface 3, which leads to higher net evaporation number.Figure 7

Bottom Line: Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature.The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures.The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical and Mechanical Engineering, Xidian University, No. 2 South Taibai Road, Xi'an, Shaanxi 710071 China ; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, No. 99 Yanxiang Road, Xi'an, Shaanxi 710054 China ; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

ABSTRACT
Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

No MeSH data available.


Related in: MedlinePlus