Limits...
Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate.

Wang W, Zhang H, Tian C, Meng X - Nanoscale Res Lett (2015)

Bottom Line: Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature.The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures.The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical and Mechanical Engineering, Xidian University, No. 2 South Taibai Road, Xi'an, Shaanxi 710071 China ; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, No. 99 Yanxiang Road, Xi'an, Shaanxi 710054 China ; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

ABSTRACT
Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

No MeSH data available.


Related in: MedlinePlus

Four different configurations of nanostructured surfaces on solid substrate. (a) Surface 0, plate surface with no nanostructures; (b) surface 1, plat surface with nanostructures’ height of 1.8225 nm in the y-z plane; (c) surface 2, plat surface with nanostructures’ height of 3.479 nm in the y-z plane; (d) surface 3, plat surface with nanostructures’ height of 4.455 nm in the y-z plane; (e) four nanostructures’ position on solid substrate in the top view.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4401484&req=5

Fig2: Four different configurations of nanostructured surfaces on solid substrate. (a) Surface 0, plate surface with no nanostructures; (b) surface 1, plat surface with nanostructures’ height of 1.8225 nm in the y-z plane; (c) surface 2, plat surface with nanostructures’ height of 3.479 nm in the y-z plane; (d) surface 3, plat surface with nanostructures’ height of 4.455 nm in the y-z plane; (e) four nanostructures’ position on solid substrate in the top view.

Mentions: Aiming for understanding the influences of different nanostructures on evaporation and explosive boiling, we construct four different configurations of nanostructured surface on the solid aluminum substrate, as shown in Figure 2. Figure 2a illustrates a plate surface with no nanostructures. For the nanostructured surface, four cubic nanostructures with the same undersurface size of 1.8 nm (x) × 1.8 nm (y) and three different heights 1.8225 nm (surface 1), 3.479 nm (surface 2), and 4.455 nm (surface 3) act as nanoposts to obtain three different nanostructured surface configurations, as described in Figure 2b,c,d. The solid aluminum substrate consists of seven layers of aluminum atoms, and the different layers match with different functions. From the bottom to the top layer, the bottom layer of aluminum atoms is kept fixed in order to avoid the migration and deformation of the solid wall, the next three layers act as a heat source where heat flux is generated, and the last three solid layers are set as heat-conducting layers through which energy passes to the fluid film. It is the spring force enforced on the nanoposts that has the ability to allow the nanoposts to vibrate around their original lattice position.Figure 2


Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate.

Wang W, Zhang H, Tian C, Meng X - Nanoscale Res Lett (2015)

Four different configurations of nanostructured surfaces on solid substrate. (a) Surface 0, plate surface with no nanostructures; (b) surface 1, plat surface with nanostructures’ height of 1.8225 nm in the y-z plane; (c) surface 2, plat surface with nanostructures’ height of 3.479 nm in the y-z plane; (d) surface 3, plat surface with nanostructures’ height of 4.455 nm in the y-z plane; (e) four nanostructures’ position on solid substrate in the top view.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4401484&req=5

Fig2: Four different configurations of nanostructured surfaces on solid substrate. (a) Surface 0, plate surface with no nanostructures; (b) surface 1, plat surface with nanostructures’ height of 1.8225 nm in the y-z plane; (c) surface 2, plat surface with nanostructures’ height of 3.479 nm in the y-z plane; (d) surface 3, plat surface with nanostructures’ height of 4.455 nm in the y-z plane; (e) four nanostructures’ position on solid substrate in the top view.
Mentions: Aiming for understanding the influences of different nanostructures on evaporation and explosive boiling, we construct four different configurations of nanostructured surface on the solid aluminum substrate, as shown in Figure 2. Figure 2a illustrates a plate surface with no nanostructures. For the nanostructured surface, four cubic nanostructures with the same undersurface size of 1.8 nm (x) × 1.8 nm (y) and three different heights 1.8225 nm (surface 1), 3.479 nm (surface 2), and 4.455 nm (surface 3) act as nanoposts to obtain three different nanostructured surface configurations, as described in Figure 2b,c,d. The solid aluminum substrate consists of seven layers of aluminum atoms, and the different layers match with different functions. From the bottom to the top layer, the bottom layer of aluminum atoms is kept fixed in order to avoid the migration and deformation of the solid wall, the next three layers act as a heat source where heat flux is generated, and the last three solid layers are set as heat-conducting layers through which energy passes to the fluid film. It is the spring force enforced on the nanoposts that has the ability to allow the nanoposts to vibrate around their original lattice position.Figure 2

Bottom Line: Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature.The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures.The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical and Mechanical Engineering, Xidian University, No. 2 South Taibai Road, Xi'an, Shaanxi 710071 China ; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, No. 99 Yanxiang Road, Xi'an, Shaanxi 710054 China ; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

ABSTRACT
Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

No MeSH data available.


Related in: MedlinePlus