Limits...
Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate.

Wang W, Zhang H, Tian C, Meng X - Nanoscale Res Lett (2015)

Bottom Line: Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature.The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures.The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical and Mechanical Engineering, Xidian University, No. 2 South Taibai Road, Xi'an, Shaanxi 710071 China ; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, No. 99 Yanxiang Road, Xi'an, Shaanxi 710054 China ; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

ABSTRACT
Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

No MeSH data available.


Related in: MedlinePlus

Initial configuration of the three-phase system.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4401484&req=5

Fig1: Initial configuration of the three-phase system.

Mentions: Figure 1 illustrates the initial configuration of the simulated system, where the simulation cell is a cube with size of 7.9 nm (x) × 7.9 nm (y) × 34.47065 nm (z). The simulation domain is divided into three regions, namely, solid, liquid, and vapor regions. Both the liquid and vapor regions are filled with argon atoms, and the solid region constituted by aluminum. Seven layers of aluminum atoms lie at the bottom of the simulation domain. For the solid wall, 5,600 aluminum atoms are arranged following the crystal lattice structure of face-centered cubic (FCC) unit with a density of 2.7 g/cm3 at saturation temperature of 90 K. Eleven liquid argon layers are placed on top of the solid aluminum with a density of 0.1374 g/cm3, and the rest space of the simulation domain is filled with 187 argon vapor atoms.Figure 1


Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate.

Wang W, Zhang H, Tian C, Meng X - Nanoscale Res Lett (2015)

Initial configuration of the three-phase system.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4401484&req=5

Fig1: Initial configuration of the three-phase system.
Mentions: Figure 1 illustrates the initial configuration of the simulated system, where the simulation cell is a cube with size of 7.9 nm (x) × 7.9 nm (y) × 34.47065 nm (z). The simulation domain is divided into three regions, namely, solid, liquid, and vapor regions. Both the liquid and vapor regions are filled with argon atoms, and the solid region constituted by aluminum. Seven layers of aluminum atoms lie at the bottom of the simulation domain. For the solid wall, 5,600 aluminum atoms are arranged following the crystal lattice structure of face-centered cubic (FCC) unit with a density of 2.7 g/cm3 at saturation temperature of 90 K. Eleven liquid argon layers are placed on top of the solid aluminum with a density of 0.1374 g/cm3, and the rest space of the simulation domain is filled with 187 argon vapor atoms.Figure 1

Bottom Line: Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature.The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures.The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical and Mechanical Engineering, Xidian University, No. 2 South Taibai Road, Xi'an, Shaanxi 710071 China ; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, No. 99 Yanxiang Road, Xi'an, Shaanxi 710054 China ; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

ABSTRACT
Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

No MeSH data available.


Related in: MedlinePlus