Limits...
Novel hollow α-Fe2O3 nanofibers via electrospinning for dye adsorption.

Gao Q, Luo J, Wang X, Gao C, Ge M - Nanoscale Res Lett (2015)

Bottom Line: In this work, hollow α-Fe2O3 nanofibers made of rice-like nanorods were successfully synthesized via a simple hydrothermal reaction on polyvinyl alcohol (PVA) nanofiber template followed by calcination.The crystallographic structure and the morphology of the as-prepared α-Fe2O3 nanofibers were characterized by X-ray diffraction, energy dispersive X-ray spectrometer, and scanning electron microscope.This work provided a versatile strategy for further design and development of functional nanofiber-nanoparticle composites towards various applications.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China ; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200438 China.

ABSTRACT
Nanomaterials such as iron oxides and ferrites have been intensively investigated for water treatment and environmental remediation applications. In this work, hollow α-Fe2O3 nanofibers made of rice-like nanorods were successfully synthesized via a simple hydrothermal reaction on polyvinyl alcohol (PVA) nanofiber template followed by calcination. The crystallographic structure and the morphology of the as-prepared α-Fe2O3 nanofibers were characterized by X-ray diffraction, energy dispersive X-ray spectrometer, and scanning electron microscope. Batch adsorption experiments were conducted, and ultraviolet-visible spectra were recorded before and after the adsorption to investigate the dye adsorption performance. The results showed that hollow α-Fe2O3 fiber assembles exhibited good magnetic responsive performance, as well as efficient adsorption for methyl orange in water. This work provided a versatile strategy for further design and development of functional nanofiber-nanoparticle composites towards various applications.

No MeSH data available.


SEM images of PVA nanofibers. (a) As-spun; (b) after thermal treatment; (c) coated with Fe3O4 magnetic nanoparticles; (d) after calcination at 600°C for 4 h under air.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4401480&req=5

Fig6: SEM images of PVA nanofibers. (a) As-spun; (b) after thermal treatment; (c) coated with Fe3O4 magnetic nanoparticles; (d) after calcination at 600°C for 4 h under air.

Mentions: As shown in Figure 6a, the as-spun PVA nanofibers with an average diameter of 311 ± 66 nm are straight and reveal uniform and smooth surfaces. After heat treatment, PVA nanofibers are bent and the diameter of the fiber becomes slightly thicker, increased to 328 ± 55 nm, which may be due to the annealing during the heat treatment process. During the deposition process of magnetite, the color of nanofiber mat was changed from white to pale brown. The SEM image revealed a uniform deposition of Fe3O4 layer onto the surface of PVA nanofibers and no formation of large magnetite particles (Figure 6c). The average diameter of Fe3O4 nanoparticle-coated PVA nanofibers was 380 ± 53 nm; thus, the layer thickness of Fe3O4 nanoparticles deposited on PVA nanofibers was about 26 nm. The uniform deposition of Fe3O4 layer is mainly attributed to the complexation of iron ions or Fe3O4 nanoparticles with the hydroxyl groups in PVA. After calcination at 600°C for 4 h under air, intact nanofibrous morphology remained, but hollow structure was approached (as indicated by an arrow in Figure 6d). With the calcination temperature increased gradually, PVA nanofibers decomposed, interconnected Fe3O4 nanoparticles maintained the fibrous morphology, and eventually transformed to α-Fe2O3 nanofibers with hollow structure.Figure 6


Novel hollow α-Fe2O3 nanofibers via electrospinning for dye adsorption.

Gao Q, Luo J, Wang X, Gao C, Ge M - Nanoscale Res Lett (2015)

SEM images of PVA nanofibers. (a) As-spun; (b) after thermal treatment; (c) coated with Fe3O4 magnetic nanoparticles; (d) after calcination at 600°C for 4 h under air.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4401480&req=5

Fig6: SEM images of PVA nanofibers. (a) As-spun; (b) after thermal treatment; (c) coated with Fe3O4 magnetic nanoparticles; (d) after calcination at 600°C for 4 h under air.
Mentions: As shown in Figure 6a, the as-spun PVA nanofibers with an average diameter of 311 ± 66 nm are straight and reveal uniform and smooth surfaces. After heat treatment, PVA nanofibers are bent and the diameter of the fiber becomes slightly thicker, increased to 328 ± 55 nm, which may be due to the annealing during the heat treatment process. During the deposition process of magnetite, the color of nanofiber mat was changed from white to pale brown. The SEM image revealed a uniform deposition of Fe3O4 layer onto the surface of PVA nanofibers and no formation of large magnetite particles (Figure 6c). The average diameter of Fe3O4 nanoparticle-coated PVA nanofibers was 380 ± 53 nm; thus, the layer thickness of Fe3O4 nanoparticles deposited on PVA nanofibers was about 26 nm. The uniform deposition of Fe3O4 layer is mainly attributed to the complexation of iron ions or Fe3O4 nanoparticles with the hydroxyl groups in PVA. After calcination at 600°C for 4 h under air, intact nanofibrous morphology remained, but hollow structure was approached (as indicated by an arrow in Figure 6d). With the calcination temperature increased gradually, PVA nanofibers decomposed, interconnected Fe3O4 nanoparticles maintained the fibrous morphology, and eventually transformed to α-Fe2O3 nanofibers with hollow structure.Figure 6

Bottom Line: In this work, hollow α-Fe2O3 nanofibers made of rice-like nanorods were successfully synthesized via a simple hydrothermal reaction on polyvinyl alcohol (PVA) nanofiber template followed by calcination.The crystallographic structure and the morphology of the as-prepared α-Fe2O3 nanofibers were characterized by X-ray diffraction, energy dispersive X-ray spectrometer, and scanning electron microscope.This work provided a versatile strategy for further design and development of functional nanofiber-nanoparticle composites towards various applications.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China ; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200438 China.

ABSTRACT
Nanomaterials such as iron oxides and ferrites have been intensively investigated for water treatment and environmental remediation applications. In this work, hollow α-Fe2O3 nanofibers made of rice-like nanorods were successfully synthesized via a simple hydrothermal reaction on polyvinyl alcohol (PVA) nanofiber template followed by calcination. The crystallographic structure and the morphology of the as-prepared α-Fe2O3 nanofibers were characterized by X-ray diffraction, energy dispersive X-ray spectrometer, and scanning electron microscope. Batch adsorption experiments were conducted, and ultraviolet-visible spectra were recorded before and after the adsorption to investigate the dye adsorption performance. The results showed that hollow α-Fe2O3 fiber assembles exhibited good magnetic responsive performance, as well as efficient adsorption for methyl orange in water. This work provided a versatile strategy for further design and development of functional nanofiber-nanoparticle composites towards various applications.

No MeSH data available.