Limits...
Novel hollow α-Fe2O3 nanofibers via electrospinning for dye adsorption.

Gao Q, Luo J, Wang X, Gao C, Ge M - Nanoscale Res Lett (2015)

Bottom Line: In this work, hollow α-Fe2O3 nanofibers made of rice-like nanorods were successfully synthesized via a simple hydrothermal reaction on polyvinyl alcohol (PVA) nanofiber template followed by calcination.The crystallographic structure and the morphology of the as-prepared α-Fe2O3 nanofibers were characterized by X-ray diffraction, energy dispersive X-ray spectrometer, and scanning electron microscope.This work provided a versatile strategy for further design and development of functional nanofiber-nanoparticle composites towards various applications.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China ; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200438 China.

ABSTRACT
Nanomaterials such as iron oxides and ferrites have been intensively investigated for water treatment and environmental remediation applications. In this work, hollow α-Fe2O3 nanofibers made of rice-like nanorods were successfully synthesized via a simple hydrothermal reaction on polyvinyl alcohol (PVA) nanofiber template followed by calcination. The crystallographic structure and the morphology of the as-prepared α-Fe2O3 nanofibers were characterized by X-ray diffraction, energy dispersive X-ray spectrometer, and scanning electron microscope. Batch adsorption experiments were conducted, and ultraviolet-visible spectra were recorded before and after the adsorption to investigate the dye adsorption performance. The results showed that hollow α-Fe2O3 fiber assembles exhibited good magnetic responsive performance, as well as efficient adsorption for methyl orange in water. This work provided a versatile strategy for further design and development of functional nanofiber-nanoparticle composites towards various applications.

No MeSH data available.


Related in: MedlinePlus

Thermogravimetric analysis curves of PVA nanofibers (a) after heat treatment and (b) coated with Fe3O4 magnetic nanoparticles.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4401480&req=5

Fig4: Thermogravimetric analysis curves of PVA nanofibers (a) after heat treatment and (b) coated with Fe3O4 magnetic nanoparticles.

Mentions: Figure 4 shows the TG curves of PVA nanofibers before and after the hydrothermal reaction. After the heat treatment, PVA nanofibers reveal good thermal stability below 229°C. Weight loss occurs in the region of 240°C to 350°C, probably because of dehydration of hydroxyl groups within the skeleton PVA molecules. Weight loss between 350°C to 470°C was mainly induced by the decomposition of C-C skeleton. Over 470°C, the weight of PVA basically unchanged which implies that PVA has been completely removed via calcination. In Figure 3b, PVA-Fe3O4 composite fibers showed a difference of 17 wt% in resultant weight over 500°C compared to PVA nanofibers which generated nonwoven fabrics of iron oxide.Figure 4


Novel hollow α-Fe2O3 nanofibers via electrospinning for dye adsorption.

Gao Q, Luo J, Wang X, Gao C, Ge M - Nanoscale Res Lett (2015)

Thermogravimetric analysis curves of PVA nanofibers (a) after heat treatment and (b) coated with Fe3O4 magnetic nanoparticles.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4401480&req=5

Fig4: Thermogravimetric analysis curves of PVA nanofibers (a) after heat treatment and (b) coated with Fe3O4 magnetic nanoparticles.
Mentions: Figure 4 shows the TG curves of PVA nanofibers before and after the hydrothermal reaction. After the heat treatment, PVA nanofibers reveal good thermal stability below 229°C. Weight loss occurs in the region of 240°C to 350°C, probably because of dehydration of hydroxyl groups within the skeleton PVA molecules. Weight loss between 350°C to 470°C was mainly induced by the decomposition of C-C skeleton. Over 470°C, the weight of PVA basically unchanged which implies that PVA has been completely removed via calcination. In Figure 3b, PVA-Fe3O4 composite fibers showed a difference of 17 wt% in resultant weight over 500°C compared to PVA nanofibers which generated nonwoven fabrics of iron oxide.Figure 4

Bottom Line: In this work, hollow α-Fe2O3 nanofibers made of rice-like nanorods were successfully synthesized via a simple hydrothermal reaction on polyvinyl alcohol (PVA) nanofiber template followed by calcination.The crystallographic structure and the morphology of the as-prepared α-Fe2O3 nanofibers were characterized by X-ray diffraction, energy dispersive X-ray spectrometer, and scanning electron microscope.This work provided a versatile strategy for further design and development of functional nanofiber-nanoparticle composites towards various applications.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China ; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200438 China.

ABSTRACT
Nanomaterials such as iron oxides and ferrites have been intensively investigated for water treatment and environmental remediation applications. In this work, hollow α-Fe2O3 nanofibers made of rice-like nanorods were successfully synthesized via a simple hydrothermal reaction on polyvinyl alcohol (PVA) nanofiber template followed by calcination. The crystallographic structure and the morphology of the as-prepared α-Fe2O3 nanofibers were characterized by X-ray diffraction, energy dispersive X-ray spectrometer, and scanning electron microscope. Batch adsorption experiments were conducted, and ultraviolet-visible spectra were recorded before and after the adsorption to investigate the dye adsorption performance. The results showed that hollow α-Fe2O3 fiber assembles exhibited good magnetic responsive performance, as well as efficient adsorption for methyl orange in water. This work provided a versatile strategy for further design and development of functional nanofiber-nanoparticle composites towards various applications.

No MeSH data available.


Related in: MedlinePlus