Limits...
Novel hollow α-Fe2O3 nanofibers via electrospinning for dye adsorption.

Gao Q, Luo J, Wang X, Gao C, Ge M - Nanoscale Res Lett (2015)

Bottom Line: In this work, hollow α-Fe2O3 nanofibers made of rice-like nanorods were successfully synthesized via a simple hydrothermal reaction on polyvinyl alcohol (PVA) nanofiber template followed by calcination.The crystallographic structure and the morphology of the as-prepared α-Fe2O3 nanofibers were characterized by X-ray diffraction, energy dispersive X-ray spectrometer, and scanning electron microscope.This work provided a versatile strategy for further design and development of functional nanofiber-nanoparticle composites towards various applications.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China ; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200438 China.

ABSTRACT
Nanomaterials such as iron oxides and ferrites have been intensively investigated for water treatment and environmental remediation applications. In this work, hollow α-Fe2O3 nanofibers made of rice-like nanorods were successfully synthesized via a simple hydrothermal reaction on polyvinyl alcohol (PVA) nanofiber template followed by calcination. The crystallographic structure and the morphology of the as-prepared α-Fe2O3 nanofibers were characterized by X-ray diffraction, energy dispersive X-ray spectrometer, and scanning electron microscope. Batch adsorption experiments were conducted, and ultraviolet-visible spectra were recorded before and after the adsorption to investigate the dye adsorption performance. The results showed that hollow α-Fe2O3 fiber assembles exhibited good magnetic responsive performance, as well as efficient adsorption for methyl orange in water. This work provided a versatile strategy for further design and development of functional nanofiber-nanoparticle composites towards various applications.

No MeSH data available.


Infrared spectra of PVA nanofibers. (a) As-spun; (b) after thermal treatment; (c) coated with magnetite layer and its XRD pattern.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4401480&req=5

Fig2: Infrared spectra of PVA nanofibers. (a) As-spun; (b) after thermal treatment; (c) coated with magnetite layer and its XRD pattern.

Mentions: The formation of Fe3O4 on the PVA nanofibers can be monitored by the FT-IR spectra and XRD pattern. Figure 2 shows FT-IR spectra of as-spun PVA nanofibers, PVA nanofibers after heat treatment, and PVA nanofibers deposited with magnetite layer together with its XRD pattern. A broad characteristic peak at 3,300 cm−1 attributed to the -OH stretching vibration of PVA [13]. Compared to Figure 2a, no new absorbance band was observed in the spectrum of PVA nanofibers after heat treatment (Figure 2b), indicating only the physical changes that occur in the heat treatment process. In Figure 2c, the absorption peak at 567 cm−1 as the characteristic peak of Fe-O bonds in Fe3O4 was observed [24], indicating that successful hydrothermal synthesis of Fe3O4 on the surface of PVA nanofibers. Moreover, the formation of Fe3O4 was further confirmed by the characteristic peaks observed in the XRD pattern. As shown in Figure 2, the XRD pattern of PVA nanofibers deposited with magnetite layer showed five diffraction peaks at 2θ of 30.2°, 35.6°, 43.3°, 53.5°, and 57.2°. These peak positions agree with (220), (311), (400), (422), and (511) crystallographic planes of the spinel phase of Fe3O4 [25].Figure 2


Novel hollow α-Fe2O3 nanofibers via electrospinning for dye adsorption.

Gao Q, Luo J, Wang X, Gao C, Ge M - Nanoscale Res Lett (2015)

Infrared spectra of PVA nanofibers. (a) As-spun; (b) after thermal treatment; (c) coated with magnetite layer and its XRD pattern.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4401480&req=5

Fig2: Infrared spectra of PVA nanofibers. (a) As-spun; (b) after thermal treatment; (c) coated with magnetite layer and its XRD pattern.
Mentions: The formation of Fe3O4 on the PVA nanofibers can be monitored by the FT-IR spectra and XRD pattern. Figure 2 shows FT-IR spectra of as-spun PVA nanofibers, PVA nanofibers after heat treatment, and PVA nanofibers deposited with magnetite layer together with its XRD pattern. A broad characteristic peak at 3,300 cm−1 attributed to the -OH stretching vibration of PVA [13]. Compared to Figure 2a, no new absorbance band was observed in the spectrum of PVA nanofibers after heat treatment (Figure 2b), indicating only the physical changes that occur in the heat treatment process. In Figure 2c, the absorption peak at 567 cm−1 as the characteristic peak of Fe-O bonds in Fe3O4 was observed [24], indicating that successful hydrothermal synthesis of Fe3O4 on the surface of PVA nanofibers. Moreover, the formation of Fe3O4 was further confirmed by the characteristic peaks observed in the XRD pattern. As shown in Figure 2, the XRD pattern of PVA nanofibers deposited with magnetite layer showed five diffraction peaks at 2θ of 30.2°, 35.6°, 43.3°, 53.5°, and 57.2°. These peak positions agree with (220), (311), (400), (422), and (511) crystallographic planes of the spinel phase of Fe3O4 [25].Figure 2

Bottom Line: In this work, hollow α-Fe2O3 nanofibers made of rice-like nanorods were successfully synthesized via a simple hydrothermal reaction on polyvinyl alcohol (PVA) nanofiber template followed by calcination.The crystallographic structure and the morphology of the as-prepared α-Fe2O3 nanofibers were characterized by X-ray diffraction, energy dispersive X-ray spectrometer, and scanning electron microscope.This work provided a versatile strategy for further design and development of functional nanofiber-nanoparticle composites towards various applications.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China ; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200438 China.

ABSTRACT
Nanomaterials such as iron oxides and ferrites have been intensively investigated for water treatment and environmental remediation applications. In this work, hollow α-Fe2O3 nanofibers made of rice-like nanorods were successfully synthesized via a simple hydrothermal reaction on polyvinyl alcohol (PVA) nanofiber template followed by calcination. The crystallographic structure and the morphology of the as-prepared α-Fe2O3 nanofibers were characterized by X-ray diffraction, energy dispersive X-ray spectrometer, and scanning electron microscope. Batch adsorption experiments were conducted, and ultraviolet-visible spectra were recorded before and after the adsorption to investigate the dye adsorption performance. The results showed that hollow α-Fe2O3 fiber assembles exhibited good magnetic responsive performance, as well as efficient adsorption for methyl orange in water. This work provided a versatile strategy for further design and development of functional nanofiber-nanoparticle composites towards various applications.

No MeSH data available.