Limits...
Novel (89)Zr cell labeling approach for PET-based cell trafficking studies.

Bansal A, Pandey MK, Demirhan YE, Nesbitt JJ, Crespo-Diaz RJ, Terzic A, Behfar A, DeGrado TR - EJNMMI Res (2015)

Bottom Line: The effect of labeling on cellular viability was tested by proliferation, trypan blue, and cytotoxicity/apoptosis assays.Radioactivity concentrations of labeled cells of up to 0.5 MBq/10(6) cells were achieved without a negative effect on cellular viability.We have developed a robust, general, and biostable (89)Zr-DBN-based cell labeling strategy with promise for wide applications of PET-based non-invasive in vivo cell trafficking.

View Article: PubMed Central - PubMed

Affiliation: Department of Radiology, Mayo Clinic, Rochester, 55905 MN USA.

ABSTRACT

Background: With the recent growth of interest in cell-based therapies and radiolabeled cell products, there is a need to develop more robust cell labeling and imaging methods for in vivo tracking of living cells. This study describes evaluation of a novel cell labeling approach with the positron emission tomography (PET) isotope (89)Zr (T 1/2 = 78.4 h). (89)Zr may allow PET imaging measurements for several weeks and take advantage of the high sensitivity of PET imaging.

Methods: A novel cell labeling agent, (89)Zr-desferrioxamine-NCS ((89)Zr-DBN), was synthesized. Mouse-derived melanoma cells (mMCs), dendritic cells (mDCs), and human mesenchymal stem cells (hMSCs) were covalently labeled with (89)Zr-DBN via the reaction between the NCS group on (89)Zr-DBN and primary amine groups present on cell surface membrane protein. The stability of the label on the cell was tested by cell efflux studies for 7 days. The effect of labeling on cellular viability was tested by proliferation, trypan blue, and cytotoxicity/apoptosis assays. The stability of label was also studied in in vivo mouse models by serial PET scans and ex vivo biodistribution following intravenous and intramyocardial injection of (89)Zr-labeled hMSCs. For comparison, imaging experiments were performed after intravenous injections of (89)Zr hydrogen phosphate ((89)Zr(HPO4)2).

Results: The labeling agent, (89)Zr-DBN, was prepared in 55% ± 5% decay-corrected radiochemical yield measured by silica gel iTLC. The cell labeling efficiency was 30% to 50% after 30 min labeling depending on cell type. Radioactivity concentrations of labeled cells of up to 0.5 MBq/10(6) cells were achieved without a negative effect on cellular viability. Cell efflux studies showed high stability of the radiolabel out to 7 days. Myocardially delivered (89)Zr-labeled hMSCs showed retention in the myocardium, as well as redistribution to the lung, liver, and bone. Intravenously administered (89)Zr-labeled hMSCs also distributed primarily to the lung, liver, and bone, whereas intravenous (89)Zr(HPO4)2 distributed to the liver and bone with no activity in the lung. Thus, the in vivo stability of the radiolabel on the hMSCs was evidenced.

Conclusions: We have developed a robust, general, and biostable (89)Zr-DBN-based cell labeling strategy with promise for wide applications of PET-based non-invasive in vivo cell trafficking.

No MeSH data available.


Related in: MedlinePlus

Representative PET images and biodistribution data of89Zr-labeled hMSCs and89Zr(HPO4)2following intravenous injection.89Zr-labeled human MSCs (2 × 105 cells with radioactivity concentration approximately 0.37 MBq/106 cells) and 89Zr(HPO4)2 (approximately 0.074 MBq radioactivity) were intravenously injected in athymic mice. Most of the radioactivity was distributed in the lung, liver, and bones following injection of 89Zr-labeled hMSCs whereas most of the radioactivity was distributed in the liver and bones following injection of 89Zr(HPO4)2. Values in graphs are shown as mean ± standard deviation, n = 3.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4401478&req=5

Fig5: Representative PET images and biodistribution data of89Zr-labeled hMSCs and89Zr(HPO4)2following intravenous injection.89Zr-labeled human MSCs (2 × 105 cells with radioactivity concentration approximately 0.37 MBq/106 cells) and 89Zr(HPO4)2 (approximately 0.074 MBq radioactivity) were intravenously injected in athymic mice. Most of the radioactivity was distributed in the lung, liver, and bones following injection of 89Zr-labeled hMSCs whereas most of the radioactivity was distributed in the liver and bones following injection of 89Zr(HPO4)2. Values in graphs are shown as mean ± standard deviation, n = 3.

Mentions: PET images and biodistribution data of intravenously administered 89Zr-labeled hMSCs and 89Zr(HPO4)2 in healthy mice are shown in Figure 5. The 89Zr-labeled hMSCs were concentrated primarily in the lung and liver, followed by the bone. On the other hand, 89Zr(HPO4)2 accumulated in the bone and liver and did not distribute to lung.Figure 5


Novel (89)Zr cell labeling approach for PET-based cell trafficking studies.

Bansal A, Pandey MK, Demirhan YE, Nesbitt JJ, Crespo-Diaz RJ, Terzic A, Behfar A, DeGrado TR - EJNMMI Res (2015)

Representative PET images and biodistribution data of89Zr-labeled hMSCs and89Zr(HPO4)2following intravenous injection.89Zr-labeled human MSCs (2 × 105 cells with radioactivity concentration approximately 0.37 MBq/106 cells) and 89Zr(HPO4)2 (approximately 0.074 MBq radioactivity) were intravenously injected in athymic mice. Most of the radioactivity was distributed in the lung, liver, and bones following injection of 89Zr-labeled hMSCs whereas most of the radioactivity was distributed in the liver and bones following injection of 89Zr(HPO4)2. Values in graphs are shown as mean ± standard deviation, n = 3.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4401478&req=5

Fig5: Representative PET images and biodistribution data of89Zr-labeled hMSCs and89Zr(HPO4)2following intravenous injection.89Zr-labeled human MSCs (2 × 105 cells with radioactivity concentration approximately 0.37 MBq/106 cells) and 89Zr(HPO4)2 (approximately 0.074 MBq radioactivity) were intravenously injected in athymic mice. Most of the radioactivity was distributed in the lung, liver, and bones following injection of 89Zr-labeled hMSCs whereas most of the radioactivity was distributed in the liver and bones following injection of 89Zr(HPO4)2. Values in graphs are shown as mean ± standard deviation, n = 3.
Mentions: PET images and biodistribution data of intravenously administered 89Zr-labeled hMSCs and 89Zr(HPO4)2 in healthy mice are shown in Figure 5. The 89Zr-labeled hMSCs were concentrated primarily in the lung and liver, followed by the bone. On the other hand, 89Zr(HPO4)2 accumulated in the bone and liver and did not distribute to lung.Figure 5

Bottom Line: The effect of labeling on cellular viability was tested by proliferation, trypan blue, and cytotoxicity/apoptosis assays.Radioactivity concentrations of labeled cells of up to 0.5 MBq/10(6) cells were achieved without a negative effect on cellular viability.We have developed a robust, general, and biostable (89)Zr-DBN-based cell labeling strategy with promise for wide applications of PET-based non-invasive in vivo cell trafficking.

View Article: PubMed Central - PubMed

Affiliation: Department of Radiology, Mayo Clinic, Rochester, 55905 MN USA.

ABSTRACT

Background: With the recent growth of interest in cell-based therapies and radiolabeled cell products, there is a need to develop more robust cell labeling and imaging methods for in vivo tracking of living cells. This study describes evaluation of a novel cell labeling approach with the positron emission tomography (PET) isotope (89)Zr (T 1/2 = 78.4 h). (89)Zr may allow PET imaging measurements for several weeks and take advantage of the high sensitivity of PET imaging.

Methods: A novel cell labeling agent, (89)Zr-desferrioxamine-NCS ((89)Zr-DBN), was synthesized. Mouse-derived melanoma cells (mMCs), dendritic cells (mDCs), and human mesenchymal stem cells (hMSCs) were covalently labeled with (89)Zr-DBN via the reaction between the NCS group on (89)Zr-DBN and primary amine groups present on cell surface membrane protein. The stability of the label on the cell was tested by cell efflux studies for 7 days. The effect of labeling on cellular viability was tested by proliferation, trypan blue, and cytotoxicity/apoptosis assays. The stability of label was also studied in in vivo mouse models by serial PET scans and ex vivo biodistribution following intravenous and intramyocardial injection of (89)Zr-labeled hMSCs. For comparison, imaging experiments were performed after intravenous injections of (89)Zr hydrogen phosphate ((89)Zr(HPO4)2).

Results: The labeling agent, (89)Zr-DBN, was prepared in 55% ± 5% decay-corrected radiochemical yield measured by silica gel iTLC. The cell labeling efficiency was 30% to 50% after 30 min labeling depending on cell type. Radioactivity concentrations of labeled cells of up to 0.5 MBq/10(6) cells were achieved without a negative effect on cellular viability. Cell efflux studies showed high stability of the radiolabel out to 7 days. Myocardially delivered (89)Zr-labeled hMSCs showed retention in the myocardium, as well as redistribution to the lung, liver, and bone. Intravenously administered (89)Zr-labeled hMSCs also distributed primarily to the lung, liver, and bone, whereas intravenous (89)Zr(HPO4)2 distributed to the liver and bone with no activity in the lung. Thus, the in vivo stability of the radiolabel on the hMSCs was evidenced.

Conclusions: We have developed a robust, general, and biostable (89)Zr-DBN-based cell labeling strategy with promise for wide applications of PET-based non-invasive in vivo cell trafficking.

No MeSH data available.


Related in: MedlinePlus