Limits...
Analysis of cardiomyocyte development using immunofluorescence in embryonic mouse heart.

Wilsbacher LD, Coughlin SR - J Vis Exp (2015)

Bottom Line: During heart development, the generation of myocardial-specific structural and functional units including sarcomeres, contractile myofibrils, intercalated discs, and costameres requires the coordinated assembly of multiple components in time and space.Disruption in assembly of these components leads to developmental heart defects.Immunofluorescent staining techniques are used commonly in cultured cardiomyocytes to probe myofibril maturation, but this ex vivo approach is limited by the extent to which myocytes will fully differentiate in culture, lack of normal in vivo mechanical inputs, and absence of endocardial cues.

View Article: PubMed Central - PubMed

Affiliation: Feinberg Cardiovascular Research Institute, Northwestern University; Cardiovascular Research Institute, University of California, San Francisco; Lisa.Wilsbacher@northwestern.edu.

ABSTRACT
During heart development, the generation of myocardial-specific structural and functional units including sarcomeres, contractile myofibrils, intercalated discs, and costameres requires the coordinated assembly of multiple components in time and space. Disruption in assembly of these components leads to developmental heart defects. Immunofluorescent staining techniques are used commonly in cultured cardiomyocytes to probe myofibril maturation, but this ex vivo approach is limited by the extent to which myocytes will fully differentiate in culture, lack of normal in vivo mechanical inputs, and absence of endocardial cues. Application of immunofluorescence techniques to the study of developing mouse heart is desirable but more technically challenging, and methods often lack sufficient sensitivity and resolution to visualize sarcomeres in the early stages of heart development. Here, we describe a robust and reproducible method to co-immunostain multiple proteins or to co-visualize a fluorescent protein with immunofluorescent staining in the embryonic mouse heart and use this method to analyze developing myofibrils, intercalated discs, and costameres. This method can be further applied to assess cardiomyocyte structural changes caused by mutations that lead to developmental heart defects.

No MeSH data available.


Related in: MedlinePlus

Play Video
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4401388&req=5


Analysis of cardiomyocyte development using immunofluorescence in embryonic mouse heart.

Wilsbacher LD, Coughlin SR - J Vis Exp (2015)

© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4401388&req=5

Bottom Line: During heart development, the generation of myocardial-specific structural and functional units including sarcomeres, contractile myofibrils, intercalated discs, and costameres requires the coordinated assembly of multiple components in time and space.Disruption in assembly of these components leads to developmental heart defects.Immunofluorescent staining techniques are used commonly in cultured cardiomyocytes to probe myofibril maturation, but this ex vivo approach is limited by the extent to which myocytes will fully differentiate in culture, lack of normal in vivo mechanical inputs, and absence of endocardial cues.

View Article: PubMed Central - PubMed

Affiliation: Feinberg Cardiovascular Research Institute, Northwestern University; Cardiovascular Research Institute, University of California, San Francisco; Lisa.Wilsbacher@northwestern.edu.

ABSTRACT
During heart development, the generation of myocardial-specific structural and functional units including sarcomeres, contractile myofibrils, intercalated discs, and costameres requires the coordinated assembly of multiple components in time and space. Disruption in assembly of these components leads to developmental heart defects. Immunofluorescent staining techniques are used commonly in cultured cardiomyocytes to probe myofibril maturation, but this ex vivo approach is limited by the extent to which myocytes will fully differentiate in culture, lack of normal in vivo mechanical inputs, and absence of endocardial cues. Application of immunofluorescence techniques to the study of developing mouse heart is desirable but more technically challenging, and methods often lack sufficient sensitivity and resolution to visualize sarcomeres in the early stages of heart development. Here, we describe a robust and reproducible method to co-immunostain multiple proteins or to co-visualize a fluorescent protein with immunofluorescent staining in the embryonic mouse heart and use this method to analyze developing myofibrils, intercalated discs, and costameres. This method can be further applied to assess cardiomyocyte structural changes caused by mutations that lead to developmental heart defects.

No MeSH data available.


Related in: MedlinePlus