Limits...
Alogliptin benzoate for management of type 2 diabetes.

Saisho Y - Vasc Health Risk Manag (2015)

Bottom Line: DPP-4 inhibitors are generally well tolerated because of their low risk of hypoglycemia and other adverse events.Alogliptin benzoate is a newly developed, highly selective DPP-4 inhibitor which has been approved in many countries throughout the world.Once-daily administration of alogliptin as either monotherapy or combination therapy with other oral antidiabetic drugs or insulin has a potent glucose-lowering effect which is similar to that of other DPP-4 inhibitors, with a low risk of hypoglycemia and weight gain.

View Article: PubMed Central - PubMed

Affiliation: Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.

ABSTRACT
Dipeptidyl peptidase-4 (DPP-4) inhibitors, a new class of oral hypoglycemic agents, augment glucose-dependent insulin secretion and suppress glucagon levels through enhancement of the action of endogenous incretin by inhibiting DPP-4, an incretin-degrading enzyme. DPP-4 inhibitors are generally well tolerated because of their low risk of hypoglycemia and other adverse events. Moreover, with their potential to improve beta cell function, a core defect of type 2 diabetes, DPP-4 inhibitors are becoming a major component of treatment of type 2 diabetes. Alogliptin benzoate is a newly developed, highly selective DPP-4 inhibitor which has been approved in many countries throughout the world. Once-daily administration of alogliptin as either monotherapy or combination therapy with other oral antidiabetic drugs or insulin has a potent glucose-lowering effect which is similar to that of other DPP-4 inhibitors, with a low risk of hypoglycemia and weight gain. The cardiovascular safety of this drug has been confirmed in a recent randomized controlled trial. This review summarizes the efficacy and safety of alogliptin, and discusses the role of DPP-4 inhibitors in the treatment of type 2 diabetes.

Show MeSH

Related in: MedlinePlus

Proposed concept of treatment strategy for T2DM in relation to beta cell function.Notes: T2DM is a progressive disease, and usually medication needs to be uptitrated with time. Currently, the most effective way to preserve or restore beta cell function is to reduce beta cell workload. Since metformin reduces insulin demand and beta cell workload through lowering hepatic glucose production, the use of metformin in addition to lifestyle modification should be considered at as early a stage of diabetes as possible, unless contraindicated. In Japan, alpha-glucosidase inhibitors are approved for clinical use in patients with impaired glucose tolerance and metabolic syndrome, in addition to T2DM. Since DPP-4 inhibitors are expected to improve beta cell function in addition to their glucose-lowering effect, the use of DPP-4 inhibitors can also be considered for a broad range of disease stages. In contrast, the use of insulin secretagogues, sulfonylureas, may not be considered as initial therapy but rather for use at a lower dose to support the insulinotropic effect of incretin therapy. Since to date no drug can cure diabetes, combination therapy should be considered in most cases. Triple combination therapy with metformin, pioglitazone, and alogliptin has been shown to be effective in reducing HbA1c and improving beta cell function. Medications not approved in Japan are not included in the figure. Copyright © 2015. The Author. Reproduced from Saisho Y. Beta cell dysfunction: its critical role in prevention and management of type 2 diabetes. World J Diabetes. 2015;6(1):109–124.93Abbreviations: IGT, impaired glucose tolerance; T2DM, type 2 diabetes; DPP-4, dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1; SGLT2, sodium-glucose cotransporter 2.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4401208&req=5

f2-vhrm-11-229: Proposed concept of treatment strategy for T2DM in relation to beta cell function.Notes: T2DM is a progressive disease, and usually medication needs to be uptitrated with time. Currently, the most effective way to preserve or restore beta cell function is to reduce beta cell workload. Since metformin reduces insulin demand and beta cell workload through lowering hepatic glucose production, the use of metformin in addition to lifestyle modification should be considered at as early a stage of diabetes as possible, unless contraindicated. In Japan, alpha-glucosidase inhibitors are approved for clinical use in patients with impaired glucose tolerance and metabolic syndrome, in addition to T2DM. Since DPP-4 inhibitors are expected to improve beta cell function in addition to their glucose-lowering effect, the use of DPP-4 inhibitors can also be considered for a broad range of disease stages. In contrast, the use of insulin secretagogues, sulfonylureas, may not be considered as initial therapy but rather for use at a lower dose to support the insulinotropic effect of incretin therapy. Since to date no drug can cure diabetes, combination therapy should be considered in most cases. Triple combination therapy with metformin, pioglitazone, and alogliptin has been shown to be effective in reducing HbA1c and improving beta cell function. Medications not approved in Japan are not included in the figure. Copyright © 2015. The Author. Reproduced from Saisho Y. Beta cell dysfunction: its critical role in prevention and management of type 2 diabetes. World J Diabetes. 2015;6(1):109–124.93Abbreviations: IGT, impaired glucose tolerance; T2DM, type 2 diabetes; DPP-4, dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1; SGLT2, sodium-glucose cotransporter 2.

Mentions: A proposed concept with regard to a treatment strategy for T2DM in relation to beta cell function is shown in Figure 2. T2DM is a progressive disease, and usually medication needs to be uptitrated with time.97 Currently, the most effective strategy to preserve or restore beta cell function is to reduce the beta cell workload.98 Since metformin reduces the insulin demand and beta cell workload by lowering hepatic glucose production, use of metformin in addition to lifestyle modification should be considered at as early a stage of diabetes as possible, unless contraindicated. In addition to the glucose-lowering efficacy of metformin, the less weight gain or modest weight loss, low risk of hypoglycemia, and low cost of this drug support metformin as a first-line treatment for T2DM, as recommended in most guidelines.99–101 Other non-insulin secretagogues, such as TZDs, alpha-glucosidase inhibitors, and sodium-glucose cotransporter 2 inhibitors should also be considered as treatment options to reduce beta cell workload, in addition to their clinical utility, ie, low risk of hypoglycemia.


Alogliptin benzoate for management of type 2 diabetes.

Saisho Y - Vasc Health Risk Manag (2015)

Proposed concept of treatment strategy for T2DM in relation to beta cell function.Notes: T2DM is a progressive disease, and usually medication needs to be uptitrated with time. Currently, the most effective way to preserve or restore beta cell function is to reduce beta cell workload. Since metformin reduces insulin demand and beta cell workload through lowering hepatic glucose production, the use of metformin in addition to lifestyle modification should be considered at as early a stage of diabetes as possible, unless contraindicated. In Japan, alpha-glucosidase inhibitors are approved for clinical use in patients with impaired glucose tolerance and metabolic syndrome, in addition to T2DM. Since DPP-4 inhibitors are expected to improve beta cell function in addition to their glucose-lowering effect, the use of DPP-4 inhibitors can also be considered for a broad range of disease stages. In contrast, the use of insulin secretagogues, sulfonylureas, may not be considered as initial therapy but rather for use at a lower dose to support the insulinotropic effect of incretin therapy. Since to date no drug can cure diabetes, combination therapy should be considered in most cases. Triple combination therapy with metformin, pioglitazone, and alogliptin has been shown to be effective in reducing HbA1c and improving beta cell function. Medications not approved in Japan are not included in the figure. Copyright © 2015. The Author. Reproduced from Saisho Y. Beta cell dysfunction: its critical role in prevention and management of type 2 diabetes. World J Diabetes. 2015;6(1):109–124.93Abbreviations: IGT, impaired glucose tolerance; T2DM, type 2 diabetes; DPP-4, dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1; SGLT2, sodium-glucose cotransporter 2.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4401208&req=5

f2-vhrm-11-229: Proposed concept of treatment strategy for T2DM in relation to beta cell function.Notes: T2DM is a progressive disease, and usually medication needs to be uptitrated with time. Currently, the most effective way to preserve or restore beta cell function is to reduce beta cell workload. Since metformin reduces insulin demand and beta cell workload through lowering hepatic glucose production, the use of metformin in addition to lifestyle modification should be considered at as early a stage of diabetes as possible, unless contraindicated. In Japan, alpha-glucosidase inhibitors are approved for clinical use in patients with impaired glucose tolerance and metabolic syndrome, in addition to T2DM. Since DPP-4 inhibitors are expected to improve beta cell function in addition to their glucose-lowering effect, the use of DPP-4 inhibitors can also be considered for a broad range of disease stages. In contrast, the use of insulin secretagogues, sulfonylureas, may not be considered as initial therapy but rather for use at a lower dose to support the insulinotropic effect of incretin therapy. Since to date no drug can cure diabetes, combination therapy should be considered in most cases. Triple combination therapy with metformin, pioglitazone, and alogliptin has been shown to be effective in reducing HbA1c and improving beta cell function. Medications not approved in Japan are not included in the figure. Copyright © 2015. The Author. Reproduced from Saisho Y. Beta cell dysfunction: its critical role in prevention and management of type 2 diabetes. World J Diabetes. 2015;6(1):109–124.93Abbreviations: IGT, impaired glucose tolerance; T2DM, type 2 diabetes; DPP-4, dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1; SGLT2, sodium-glucose cotransporter 2.
Mentions: A proposed concept with regard to a treatment strategy for T2DM in relation to beta cell function is shown in Figure 2. T2DM is a progressive disease, and usually medication needs to be uptitrated with time.97 Currently, the most effective strategy to preserve or restore beta cell function is to reduce the beta cell workload.98 Since metformin reduces the insulin demand and beta cell workload by lowering hepatic glucose production, use of metformin in addition to lifestyle modification should be considered at as early a stage of diabetes as possible, unless contraindicated. In addition to the glucose-lowering efficacy of metformin, the less weight gain or modest weight loss, low risk of hypoglycemia, and low cost of this drug support metformin as a first-line treatment for T2DM, as recommended in most guidelines.99–101 Other non-insulin secretagogues, such as TZDs, alpha-glucosidase inhibitors, and sodium-glucose cotransporter 2 inhibitors should also be considered as treatment options to reduce beta cell workload, in addition to their clinical utility, ie, low risk of hypoglycemia.

Bottom Line: DPP-4 inhibitors are generally well tolerated because of their low risk of hypoglycemia and other adverse events.Alogliptin benzoate is a newly developed, highly selective DPP-4 inhibitor which has been approved in many countries throughout the world.Once-daily administration of alogliptin as either monotherapy or combination therapy with other oral antidiabetic drugs or insulin has a potent glucose-lowering effect which is similar to that of other DPP-4 inhibitors, with a low risk of hypoglycemia and weight gain.

View Article: PubMed Central - PubMed

Affiliation: Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.

ABSTRACT
Dipeptidyl peptidase-4 (DPP-4) inhibitors, a new class of oral hypoglycemic agents, augment glucose-dependent insulin secretion and suppress glucagon levels through enhancement of the action of endogenous incretin by inhibiting DPP-4, an incretin-degrading enzyme. DPP-4 inhibitors are generally well tolerated because of their low risk of hypoglycemia and other adverse events. Moreover, with their potential to improve beta cell function, a core defect of type 2 diabetes, DPP-4 inhibitors are becoming a major component of treatment of type 2 diabetes. Alogliptin benzoate is a newly developed, highly selective DPP-4 inhibitor which has been approved in many countries throughout the world. Once-daily administration of alogliptin as either monotherapy or combination therapy with other oral antidiabetic drugs or insulin has a potent glucose-lowering effect which is similar to that of other DPP-4 inhibitors, with a low risk of hypoglycemia and weight gain. The cardiovascular safety of this drug has been confirmed in a recent randomized controlled trial. This review summarizes the efficacy and safety of alogliptin, and discusses the role of DPP-4 inhibitors in the treatment of type 2 diabetes.

Show MeSH
Related in: MedlinePlus