Limits...
Granulation techniques and technologies: recent progresses.

Shanmugam S - Bioimpacts (2015)

Bottom Line: Among currently available technologies, spray drying, roller compaction, high shear mixing, and fluid bed granulation are worth of note.Like any other scientific field, pharmaceutical granulation technology also continues to change, and arrival of novel and innovative technologies are inevitable.This review gives an overview of these with a short description about each development along with its significance and limitations.

View Article: PubMed Central - HTML - PubMed

Affiliation: Pharm. R&D Institute, Hanmi Pharm. Co., Ltd., Hwasung, Gyeonggi, Korea.

ABSTRACT
Granulation, the process of particle enlargement by agglomeration technique, is one of the most significant unit operations in the production of pharmaceutical dosage forms, mostly tablets and capsules. Granulation process transforms fine powders into free-flowing, dust-free granules that are easy to compress. Nevertheless, granulation poses numerous challenges due to high quality requirement of the formed granules in terms of content uniformity and physicochemical properties such as granule size, bulk density, porosity, hardness, moisture, compressibility, etc. together with physical and chemical stability of the drug. Granulation process can be divided into two types: wet granulation that utilize a liquid in the process and dry granulation that requires no liquid. The type of process selection requires thorough knowledge of physicochemical properties of the drug, excipients, required flow and release properties, to name a few. Among currently available technologies, spray drying, roller compaction, high shear mixing, and fluid bed granulation are worth of note. Like any other scientific field, pharmaceutical granulation technology also continues to change, and arrival of novel and innovative technologies are inevitable. This review focuses on the recent progress in the granulation techniques and technologies such as pneumatic dry granulation, reverse wet granulation, steam granulation, moisture-activated dry granulation, thermal adhesion granulation, freeze granulation, and foamed binder or foam granulation. This review gives an overview of these with a short description about each development along with its significance and limitations.

No MeSH data available.


Related in: MedlinePlus

© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4401168&req=5

Mentions: Melt granulation or thermoplastic granulation is a technique that facilitates the agglomeration of powder particles using meltable binders, which melts or softens at relatively low temperature (50–90 °C).30 Fig. 9 represents the schematic diagram of melt granulation. Cooling of the agglomerated powder and the consequent solidification of the molten or soften binder complete the granulation process.31,32 Low melting binders can be added to the granulation process either in the form of solid particles that melt during the process (melt-in procedure or in situ melt granulation) or in the form of molten liquid, optionally containing the dispersed drug (spray-on or pump-on procedure), which displays a variety of options to design final granular properties. More specifically, the melt-in procedure of melt granulation process includes heating a mixture of drug, binder and other excipients to a temperature within or above the melting range of the binder. On the contrary, the spray-on procedure encompasses spraying of a molten binder, optionally containing the drug, onto the heated powders.33-35


Granulation techniques and technologies: recent progresses.

Shanmugam S - Bioimpacts (2015)

© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4401168&req=5

Mentions: Melt granulation or thermoplastic granulation is a technique that facilitates the agglomeration of powder particles using meltable binders, which melts or softens at relatively low temperature (50–90 °C).30 Fig. 9 represents the schematic diagram of melt granulation. Cooling of the agglomerated powder and the consequent solidification of the molten or soften binder complete the granulation process.31,32 Low melting binders can be added to the granulation process either in the form of solid particles that melt during the process (melt-in procedure or in situ melt granulation) or in the form of molten liquid, optionally containing the dispersed drug (spray-on or pump-on procedure), which displays a variety of options to design final granular properties. More specifically, the melt-in procedure of melt granulation process includes heating a mixture of drug, binder and other excipients to a temperature within or above the melting range of the binder. On the contrary, the spray-on procedure encompasses spraying of a molten binder, optionally containing the drug, onto the heated powders.33-35

Bottom Line: Among currently available technologies, spray drying, roller compaction, high shear mixing, and fluid bed granulation are worth of note.Like any other scientific field, pharmaceutical granulation technology also continues to change, and arrival of novel and innovative technologies are inevitable.This review gives an overview of these with a short description about each development along with its significance and limitations.

View Article: PubMed Central - HTML - PubMed

Affiliation: Pharm. R&D Institute, Hanmi Pharm. Co., Ltd., Hwasung, Gyeonggi, Korea.

ABSTRACT
Granulation, the process of particle enlargement by agglomeration technique, is one of the most significant unit operations in the production of pharmaceutical dosage forms, mostly tablets and capsules. Granulation process transforms fine powders into free-flowing, dust-free granules that are easy to compress. Nevertheless, granulation poses numerous challenges due to high quality requirement of the formed granules in terms of content uniformity and physicochemical properties such as granule size, bulk density, porosity, hardness, moisture, compressibility, etc. together with physical and chemical stability of the drug. Granulation process can be divided into two types: wet granulation that utilize a liquid in the process and dry granulation that requires no liquid. The type of process selection requires thorough knowledge of physicochemical properties of the drug, excipients, required flow and release properties, to name a few. Among currently available technologies, spray drying, roller compaction, high shear mixing, and fluid bed granulation are worth of note. Like any other scientific field, pharmaceutical granulation technology also continues to change, and arrival of novel and innovative technologies are inevitable. This review focuses on the recent progress in the granulation techniques and technologies such as pneumatic dry granulation, reverse wet granulation, steam granulation, moisture-activated dry granulation, thermal adhesion granulation, freeze granulation, and foamed binder or foam granulation. This review gives an overview of these with a short description about each development along with its significance and limitations.

No MeSH data available.


Related in: MedlinePlus