Limits...
Granulation techniques and technologies: recent progresses.

Shanmugam S - Bioimpacts (2015)

Bottom Line: Among currently available technologies, spray drying, roller compaction, high shear mixing, and fluid bed granulation are worth of note.Like any other scientific field, pharmaceutical granulation technology also continues to change, and arrival of novel and innovative technologies are inevitable.This review gives an overview of these with a short description about each development along with its significance and limitations.

View Article: PubMed Central - HTML - PubMed

Affiliation: Pharm. R&D Institute, Hanmi Pharm. Co., Ltd., Hwasung, Gyeonggi, Korea.

ABSTRACT
Granulation, the process of particle enlargement by agglomeration technique, is one of the most significant unit operations in the production of pharmaceutical dosage forms, mostly tablets and capsules. Granulation process transforms fine powders into free-flowing, dust-free granules that are easy to compress. Nevertheless, granulation poses numerous challenges due to high quality requirement of the formed granules in terms of content uniformity and physicochemical properties such as granule size, bulk density, porosity, hardness, moisture, compressibility, etc. together with physical and chemical stability of the drug. Granulation process can be divided into two types: wet granulation that utilize a liquid in the process and dry granulation that requires no liquid. The type of process selection requires thorough knowledge of physicochemical properties of the drug, excipients, required flow and release properties, to name a few. Among currently available technologies, spray drying, roller compaction, high shear mixing, and fluid bed granulation are worth of note. Like any other scientific field, pharmaceutical granulation technology also continues to change, and arrival of novel and innovative technologies are inevitable. This review focuses on the recent progress in the granulation techniques and technologies such as pneumatic dry granulation, reverse wet granulation, steam granulation, moisture-activated dry granulation, thermal adhesion granulation, freeze granulation, and foamed binder or foam granulation. This review gives an overview of these with a short description about each development along with its significance and limitations.

No MeSH data available.


Related in: MedlinePlus

© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4401168&req=5

Mentions: Reverse wet granulation or reverse-phase wet granulation is a new development in the wet granulation technique that involves the immersion of the dry powder formulation into the binder liquid followed by controlled breakage to form granules.10 According to this invention, the binder solution was prepared initially and the dry powder excipients were added to the binder solution under mixing in granulator. Alternatively, the drug was mixed with a solution of hydrophilic polymer and/or binder to form a drug-polymer/binder slurry as a granulating fluid. Granules were then formed by immersing a mixture of other dry excipients into the drug-polymer/binder slurry. The resulted wet granules were milled after drying. The granules produced by this process were found to have good flow and handling characteristics like those produced with wet granulation process. In addition, tablets formed from these granules eroded more uniformly during dissolution testing as compared to usual wet granulation technique. The schematic diagram of this process is presented in Fig. 5.


Granulation techniques and technologies: recent progresses.

Shanmugam S - Bioimpacts (2015)

© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4401168&req=5

Mentions: Reverse wet granulation or reverse-phase wet granulation is a new development in the wet granulation technique that involves the immersion of the dry powder formulation into the binder liquid followed by controlled breakage to form granules.10 According to this invention, the binder solution was prepared initially and the dry powder excipients were added to the binder solution under mixing in granulator. Alternatively, the drug was mixed with a solution of hydrophilic polymer and/or binder to form a drug-polymer/binder slurry as a granulating fluid. Granules were then formed by immersing a mixture of other dry excipients into the drug-polymer/binder slurry. The resulted wet granules were milled after drying. The granules produced by this process were found to have good flow and handling characteristics like those produced with wet granulation process. In addition, tablets formed from these granules eroded more uniformly during dissolution testing as compared to usual wet granulation technique. The schematic diagram of this process is presented in Fig. 5.

Bottom Line: Among currently available technologies, spray drying, roller compaction, high shear mixing, and fluid bed granulation are worth of note.Like any other scientific field, pharmaceutical granulation technology also continues to change, and arrival of novel and innovative technologies are inevitable.This review gives an overview of these with a short description about each development along with its significance and limitations.

View Article: PubMed Central - HTML - PubMed

Affiliation: Pharm. R&D Institute, Hanmi Pharm. Co., Ltd., Hwasung, Gyeonggi, Korea.

ABSTRACT
Granulation, the process of particle enlargement by agglomeration technique, is one of the most significant unit operations in the production of pharmaceutical dosage forms, mostly tablets and capsules. Granulation process transforms fine powders into free-flowing, dust-free granules that are easy to compress. Nevertheless, granulation poses numerous challenges due to high quality requirement of the formed granules in terms of content uniformity and physicochemical properties such as granule size, bulk density, porosity, hardness, moisture, compressibility, etc. together with physical and chemical stability of the drug. Granulation process can be divided into two types: wet granulation that utilize a liquid in the process and dry granulation that requires no liquid. The type of process selection requires thorough knowledge of physicochemical properties of the drug, excipients, required flow and release properties, to name a few. Among currently available technologies, spray drying, roller compaction, high shear mixing, and fluid bed granulation are worth of note. Like any other scientific field, pharmaceutical granulation technology also continues to change, and arrival of novel and innovative technologies are inevitable. This review focuses on the recent progress in the granulation techniques and technologies such as pneumatic dry granulation, reverse wet granulation, steam granulation, moisture-activated dry granulation, thermal adhesion granulation, freeze granulation, and foamed binder or foam granulation. This review gives an overview of these with a short description about each development along with its significance and limitations.

No MeSH data available.


Related in: MedlinePlus