Limits...
Antimicrobial activities of chicken β-defensin (4 and 10) peptides against pathogenic bacteria and fungi.

Yacoub HA, Elazzazy AM, Abuzinadah OA, Al-Hejin AM, Mahmoud MM, Harakeh SM - Front Cell Infect Microbiol (2015)

Bottom Line: Host Defense Peptides (HDPs) are small cationic peptides found in several organisms.Based on blood hemolysis studies, a little hemolytic effect was showed in the case of both peptides even when applied at high concentrations.In conclusion, future work and research should be tailored to a better understanding of the mechanisms of action of those peptides and their potential use in the pharmaceutical industry to help reduce the incidence and impact of infectious agent and be marketed as a naturally occurring antibiotic.

View Article: PubMed Central - PubMed

Affiliation: Biological Sciences Department, Faculty of Sciences, King Abdulaziz University Jeddah, Saudi Arabia ; Genetic Engineering and Biotechnology Division, Cell Biology Department, National Research Centre Gizza, Egypt.

ABSTRACT
Host Defense Peptides (HDPs) are small cationic peptides found in several organisms. They play a vital role in innate immunity response and immunomodulatory stimulation. This investigation was designed to study the antimicrobial activities of β-defensin peptide-4 (sAvBD-4) and 10 (sAvBD-4) derived from chickens against pathogenic organisms including bacteria and fungi. Ten bacterial strains and three fungal species were used in investigation. The results showed that the sAvBD-10 displayed a higher bactericidal potency against all the tested bacterial strains than that of sAvBD-4. The exhibited bactericidal activity was significant against almost the different bacterial strains at different peptide concentrations except for that of Pseudomonas aeruginosa (P. aeruginosa) and Streptococcus bovis (Str. bovis) strains where a moderate effect was noted. Both peptides were effective in the inactivation of fungal species tested yielding a killing rate of up to 95%. The results revealed that the synthetic peptides were resistant to salt at a concentration of 50 mM NaCl. However, they lost antimicrobial potency when applied in the presence of high salt concentrations. Based on blood hemolysis studies, a little hemolytic effect was showed in the case of both peptides even when applied at high concentrations. The data obtained from this study indicated that synthetic avian peptides exhibit strong antibacterial and antifungal activity. In conclusion, future work and research should be tailored to a better understanding of the mechanisms of action of those peptides and their potential use in the pharmaceutical industry to help reduce the incidence and impact of infectious agent and be marketed as a naturally occurring antibiotic.

Show MeSH

Related in: MedlinePlus

Antimicrobial activities of synthetic chicken β-defensin-4 and 10-derived peptide (sAvBD) against (A) bacteria and (B) Fungal species. All assays were performed in three independent experiments and each point is the mean ± SE, (P < 0.002).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4400880&req=5

Figure 1: Antimicrobial activities of synthetic chicken β-defensin-4 and 10-derived peptide (sAvBD) against (A) bacteria and (B) Fungal species. All assays were performed in three independent experiments and each point is the mean ± SE, (P < 0.002).

Mentions: The chicken β-defensin (sAvBD-4 and 10) used in this study were analogs of the natural peptides. These were custom made having the linear N-terminal acetylated as is the case with naturally occurring mature chicken β-defensin peptides. These custom-made peptides were evaluated for their anti-bacterial and anti-fungal activities against 10 bacterial strains and three fungal species. There was a variation in the response of the bacteria to the tested peptides with sAvBD10 showing a better efficacy on average against all the bacteria tested. Statistical analyses showed that the difference was significant at the 95% as shown in (Table 2, Figures 1A,B). The results showed that sAvBD-4 inhibited the growth of both Gram-negative and positive bacteria with MIC concentrations as follows: 25 μg/ml [(Staph. epidermidis, Kleb. pneumonia, Sh. sonnei, C. albicans), 50 μg /ml (MRSA, M. luteus, Salm. typhimurium, E. coli, Asp. flavus) and 100 μg/ml for (Str. bovis, Ent. faecalis, Asp. niger)]. However, sAvBD-10 was more efficient in achieving bacterial inactivation at the following MIC concentrations: 25 μg/ml (M. luteus, Kleb. pneumonia, C. albicans, and Asp. flavus) and 50 μg/ml (Str. bovis, Ent. faecalis, MRSA, Salm. typhimurium, E. coli, Staph. epidermidis, Sh. sonnei, Asp. niger, and P. aeruginosa). The MBC levels were also determined and found to be two-fold higher than those of the corresponding MIC values (MBC range, 50–200 μg/ml) (Table 2). At those lower concentrations, sAvBD-10 had a significantly better antimicrobial activity as compared to sAvBD-4 against all the bacteria tested (P < 0.002). However, at higher concentrations of 100 μg/ml, both peptides showed no significant difference in their bactericidal efficacy (Table 2).


Antimicrobial activities of chicken β-defensin (4 and 10) peptides against pathogenic bacteria and fungi.

Yacoub HA, Elazzazy AM, Abuzinadah OA, Al-Hejin AM, Mahmoud MM, Harakeh SM - Front Cell Infect Microbiol (2015)

Antimicrobial activities of synthetic chicken β-defensin-4 and 10-derived peptide (sAvBD) against (A) bacteria and (B) Fungal species. All assays were performed in three independent experiments and each point is the mean ± SE, (P < 0.002).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4400880&req=5

Figure 1: Antimicrobial activities of synthetic chicken β-defensin-4 and 10-derived peptide (sAvBD) against (A) bacteria and (B) Fungal species. All assays were performed in three independent experiments and each point is the mean ± SE, (P < 0.002).
Mentions: The chicken β-defensin (sAvBD-4 and 10) used in this study were analogs of the natural peptides. These were custom made having the linear N-terminal acetylated as is the case with naturally occurring mature chicken β-defensin peptides. These custom-made peptides were evaluated for their anti-bacterial and anti-fungal activities against 10 bacterial strains and three fungal species. There was a variation in the response of the bacteria to the tested peptides with sAvBD10 showing a better efficacy on average against all the bacteria tested. Statistical analyses showed that the difference was significant at the 95% as shown in (Table 2, Figures 1A,B). The results showed that sAvBD-4 inhibited the growth of both Gram-negative and positive bacteria with MIC concentrations as follows: 25 μg/ml [(Staph. epidermidis, Kleb. pneumonia, Sh. sonnei, C. albicans), 50 μg /ml (MRSA, M. luteus, Salm. typhimurium, E. coli, Asp. flavus) and 100 μg/ml for (Str. bovis, Ent. faecalis, Asp. niger)]. However, sAvBD-10 was more efficient in achieving bacterial inactivation at the following MIC concentrations: 25 μg/ml (M. luteus, Kleb. pneumonia, C. albicans, and Asp. flavus) and 50 μg/ml (Str. bovis, Ent. faecalis, MRSA, Salm. typhimurium, E. coli, Staph. epidermidis, Sh. sonnei, Asp. niger, and P. aeruginosa). The MBC levels were also determined and found to be two-fold higher than those of the corresponding MIC values (MBC range, 50–200 μg/ml) (Table 2). At those lower concentrations, sAvBD-10 had a significantly better antimicrobial activity as compared to sAvBD-4 against all the bacteria tested (P < 0.002). However, at higher concentrations of 100 μg/ml, both peptides showed no significant difference in their bactericidal efficacy (Table 2).

Bottom Line: Host Defense Peptides (HDPs) are small cationic peptides found in several organisms.Based on blood hemolysis studies, a little hemolytic effect was showed in the case of both peptides even when applied at high concentrations.In conclusion, future work and research should be tailored to a better understanding of the mechanisms of action of those peptides and their potential use in the pharmaceutical industry to help reduce the incidence and impact of infectious agent and be marketed as a naturally occurring antibiotic.

View Article: PubMed Central - PubMed

Affiliation: Biological Sciences Department, Faculty of Sciences, King Abdulaziz University Jeddah, Saudi Arabia ; Genetic Engineering and Biotechnology Division, Cell Biology Department, National Research Centre Gizza, Egypt.

ABSTRACT
Host Defense Peptides (HDPs) are small cationic peptides found in several organisms. They play a vital role in innate immunity response and immunomodulatory stimulation. This investigation was designed to study the antimicrobial activities of β-defensin peptide-4 (sAvBD-4) and 10 (sAvBD-4) derived from chickens against pathogenic organisms including bacteria and fungi. Ten bacterial strains and three fungal species were used in investigation. The results showed that the sAvBD-10 displayed a higher bactericidal potency against all the tested bacterial strains than that of sAvBD-4. The exhibited bactericidal activity was significant against almost the different bacterial strains at different peptide concentrations except for that of Pseudomonas aeruginosa (P. aeruginosa) and Streptococcus bovis (Str. bovis) strains where a moderate effect was noted. Both peptides were effective in the inactivation of fungal species tested yielding a killing rate of up to 95%. The results revealed that the synthetic peptides were resistant to salt at a concentration of 50 mM NaCl. However, they lost antimicrobial potency when applied in the presence of high salt concentrations. Based on blood hemolysis studies, a little hemolytic effect was showed in the case of both peptides even when applied at high concentrations. The data obtained from this study indicated that synthetic avian peptides exhibit strong antibacterial and antifungal activity. In conclusion, future work and research should be tailored to a better understanding of the mechanisms of action of those peptides and their potential use in the pharmaceutical industry to help reduce the incidence and impact of infectious agent and be marketed as a naturally occurring antibiotic.

Show MeSH
Related in: MedlinePlus