Limits...
If so many are "few," how few are "many"?

Heim S, McMillan CT, Clark R, Golob S, Min NE, Olm C, Powers J, Grossman M - Front Psychol (2015)

Bottom Line: Likewise, in Experiment 2, subjects changed their criterion for "few," with a comparable effect on the criterion for "many" which was not mentioned.Most importantly, adapting the criterion for one quantifier (e.g., "many") also appeared to affect the reciprocal quantifier (in this case, "few").Implications of this result for psychological interventions and for investigations of the neurobiology of the language-number interface are discussed.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen Aachen, Germany ; Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1) Jülich, Germany ; Jülich Aachen Research Alliance (JARA) - Translational Brain Medicine Aachen, Germany.

ABSTRACT
The scope of reference of a word's meaning can be highly variable. We present a novel paradigm to investigate the flexible interpretation of word meaning. We focus on quantifiers such as "many" or "few," a class of words that depends on number knowledge but can be interpreted in a flexible manner. Healthy young adults performed a truth value judgment task on pictorial arrays of varying amounts of blue and yellow circles, deciding whether the sentence "Many/few of the circles are yellow" was an adequate description of the stimulus. The study consisted of two experiments, one focusing on "many," one on "few." Each experiment had three blocks. In a first "baseline" block, each individual's criterion for "many" and "few" was assessed. In a second "adaptation" block, subjects received feedback about their decisions that was different from their initial judgments in an effort to evaluate the flexibility of a subject's interpretation. A third "test" block assessed whether adaptation of quantifier meaning induced in block 2 then was generalized to alter a subject's baseline meaning for "many" and "few." In Experiment 1, a proportion of yellow circles as small as 40% was reinforced as "many"; in Experiment 2, a proportion of yellow circles as large as 60% was reinforced as "few." Subjects learned the new criterion for "many" in Experiment 1, which also affected their criterion for "few" although it had never been mentioned. Likewise, in Experiment 2, subjects changed their criterion for "few," with a comparable effect on the criterion for "many" which was not mentioned. Thus, the meaning of relational quantifiers like "many" and "few" is flexible and can be adapted. Most importantly, adapting the criterion for one quantifier (e.g., "many") also appeared to affect the reciprocal quantifier (in this case, "few"). Implications of this result for psychological interventions and for investigations of the neurobiology of the language-number interface are discussed.

No MeSH data available.


(A) Average acceptability ratings for a given proportion of circles of the mentioned color, plotted separately for the quantifiers “many” (black lines) and “few” (gray lines) in the baseline blocks (dashed lines) and the test blocks after adaptation (solid lines). (B) Average acceptability ratings for a critical proportion of circles of the mentioned color, plotted separately for “many” (black bars) and “few” (gray bars) in the baseline blocks (dashed bars) and the test blocks after adaptation (solid bars). **p < 0.01, ***p < 0.001.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4400858&req=5

Figure 4: (A) Average acceptability ratings for a given proportion of circles of the mentioned color, plotted separately for the quantifiers “many” (black lines) and “few” (gray lines) in the baseline blocks (dashed lines) and the test blocks after adaptation (solid lines). (B) Average acceptability ratings for a critical proportion of circles of the mentioned color, plotted separately for “many” (black bars) and “few” (gray bars) in the baseline blocks (dashed bars) and the test blocks after adaptation (solid bars). **p < 0.01, ***p < 0.001.

Mentions: The 2 × 2 × 6 ANOVA yielded significant main effects for BLOCK [F(1, 20) = 5.82; p = 0.026] and QUANTIFIER [F(5, 16) = 78.67; p < 0.001] and a trend for PROPORTION [F(1, 20) = 2.71; p = 0.059]. Moreover, the following interaction terms were significant (QUANTIFIER × BLOCK: F(1, 20) = 25.61; p < 0.001; QUANTIFIER × PROPORTION: F(5, 16) = 763.71; p < 0.001; BLOCK × QUANTIFIER × PROPORTION: F(5, 16) = 6.92; p = 0.001]. The interaction term for BLOCK × PROPORTION was marginally significant [F(5, 16) = 2.43; p = 0.081]. These effects describe a strong adaptation effect for the trained quantifier “few” and a weaker transfer effect for the not trained quantifier “many” (Figure 4A).


If so many are "few," how few are "many"?

Heim S, McMillan CT, Clark R, Golob S, Min NE, Olm C, Powers J, Grossman M - Front Psychol (2015)

(A) Average acceptability ratings for a given proportion of circles of the mentioned color, plotted separately for the quantifiers “many” (black lines) and “few” (gray lines) in the baseline blocks (dashed lines) and the test blocks after adaptation (solid lines). (B) Average acceptability ratings for a critical proportion of circles of the mentioned color, plotted separately for “many” (black bars) and “few” (gray bars) in the baseline blocks (dashed bars) and the test blocks after adaptation (solid bars). **p < 0.01, ***p < 0.001.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4400858&req=5

Figure 4: (A) Average acceptability ratings for a given proportion of circles of the mentioned color, plotted separately for the quantifiers “many” (black lines) and “few” (gray lines) in the baseline blocks (dashed lines) and the test blocks after adaptation (solid lines). (B) Average acceptability ratings for a critical proportion of circles of the mentioned color, plotted separately for “many” (black bars) and “few” (gray bars) in the baseline blocks (dashed bars) and the test blocks after adaptation (solid bars). **p < 0.01, ***p < 0.001.
Mentions: The 2 × 2 × 6 ANOVA yielded significant main effects for BLOCK [F(1, 20) = 5.82; p = 0.026] and QUANTIFIER [F(5, 16) = 78.67; p < 0.001] and a trend for PROPORTION [F(1, 20) = 2.71; p = 0.059]. Moreover, the following interaction terms were significant (QUANTIFIER × BLOCK: F(1, 20) = 25.61; p < 0.001; QUANTIFIER × PROPORTION: F(5, 16) = 763.71; p < 0.001; BLOCK × QUANTIFIER × PROPORTION: F(5, 16) = 6.92; p = 0.001]. The interaction term for BLOCK × PROPORTION was marginally significant [F(5, 16) = 2.43; p = 0.081]. These effects describe a strong adaptation effect for the trained quantifier “few” and a weaker transfer effect for the not trained quantifier “many” (Figure 4A).

Bottom Line: Likewise, in Experiment 2, subjects changed their criterion for "few," with a comparable effect on the criterion for "many" which was not mentioned.Most importantly, adapting the criterion for one quantifier (e.g., "many") also appeared to affect the reciprocal quantifier (in this case, "few").Implications of this result for psychological interventions and for investigations of the neurobiology of the language-number interface are discussed.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen Aachen, Germany ; Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1) Jülich, Germany ; Jülich Aachen Research Alliance (JARA) - Translational Brain Medicine Aachen, Germany.

ABSTRACT
The scope of reference of a word's meaning can be highly variable. We present a novel paradigm to investigate the flexible interpretation of word meaning. We focus on quantifiers such as "many" or "few," a class of words that depends on number knowledge but can be interpreted in a flexible manner. Healthy young adults performed a truth value judgment task on pictorial arrays of varying amounts of blue and yellow circles, deciding whether the sentence "Many/few of the circles are yellow" was an adequate description of the stimulus. The study consisted of two experiments, one focusing on "many," one on "few." Each experiment had three blocks. In a first "baseline" block, each individual's criterion for "many" and "few" was assessed. In a second "adaptation" block, subjects received feedback about their decisions that was different from their initial judgments in an effort to evaluate the flexibility of a subject's interpretation. A third "test" block assessed whether adaptation of quantifier meaning induced in block 2 then was generalized to alter a subject's baseline meaning for "many" and "few." In Experiment 1, a proportion of yellow circles as small as 40% was reinforced as "many"; in Experiment 2, a proportion of yellow circles as large as 60% was reinforced as "few." Subjects learned the new criterion for "many" in Experiment 1, which also affected their criterion for "few" although it had never been mentioned. Likewise, in Experiment 2, subjects changed their criterion for "few," with a comparable effect on the criterion for "many" which was not mentioned. Thus, the meaning of relational quantifiers like "many" and "few" is flexible and can be adapted. Most importantly, adapting the criterion for one quantifier (e.g., "many") also appeared to affect the reciprocal quantifier (in this case, "few"). Implications of this result for psychological interventions and for investigations of the neurobiology of the language-number interface are discussed.

No MeSH data available.