Limits...
Place field repetition and purely local remapping in a multicompartment environment.

Spiers HJ, Hayman RM, Jovalekic A, Marozzi E, Jeffery KJ - Cereb. Cortex (2013)

Bottom Line: Some studies report that place cells can disambiguate different compartments, while others report that they do not.Second, this repetition does not diminish with extended experience.Third, remapping was found to be purely local for both geometric change and contextual change.

View Article: PubMed Central - PubMed

Affiliation: Department of Cognitive, Perceptual and Brain Sciences, Division of Psychology and Language Sciences, Institute of Behavioural Neuroscience, University College London, UK.

Show MeSH

Related in: MedlinePlus

(A) Frequency histograms of the pairwise intercompartment correlations for the raw data (solid bars) and the shuffled data (hollow bars), showing a clear separation between the 2 distributions, reflective of the nonrandom relationship between place fields in different compartments. (B) The same correlation pattern held for individual animals, showing the generality of this effect. (C) The 1D autocorrelation plot, generated by progressively shifting the environment in the direction of the long axis (inset) and re-correlating at every step. The vertical axis represents the firing rate map correlation, with the central value at 1.0 (map correlated with itself). The horizontal axis indicates the extent of the environment in bins (72 in total). The shaded areas represent the standard errors. The correlations for the compartments (solid line) peaked at intervals corresponding to the width of a compartment, reflecting the underlying repetition of the place field map. This periodicity was also evident in the corridor fields (dotted line), although the peaks were slightly lower, reflecting the greater number of aperiodic place fields in the corridor.
© Copyright Policy - creative-commons
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4400414&req=5

BHT198F5: (A) Frequency histograms of the pairwise intercompartment correlations for the raw data (solid bars) and the shuffled data (hollow bars), showing a clear separation between the 2 distributions, reflective of the nonrandom relationship between place fields in different compartments. (B) The same correlation pattern held for individual animals, showing the generality of this effect. (C) The 1D autocorrelation plot, generated by progressively shifting the environment in the direction of the long axis (inset) and re-correlating at every step. The vertical axis represents the firing rate map correlation, with the central value at 1.0 (map correlated with itself). The horizontal axis indicates the extent of the environment in bins (72 in total). The shaded areas represent the standard errors. The correlations for the compartments (solid line) peaked at intervals corresponding to the width of a compartment, reflecting the underlying repetition of the place field map. This periodicity was also evident in the corridor fields (dotted line), although the peaks were slightly lower, reflecting the greater number of aperiodic place fields in the corridor.

Mentions: Self-similarity was quantified in 2 ways. First, we performed bin-by-bin correlations between each pair of boxes, yielding a total of 6 correlation coefficient values per cell, and compared these correlations with those generated by randomly comparing unrelated firing fields. The fields used in the random analysis comprised the entire set of firing rate maps, pooled, from which samples were drawn without replacement. A frequency histogram of the shuffled data revealed correlations clustered just below zero, while the ordered data showed a range of correlations with a high number of high correlations (Fig. 5A), a pattern that was consistent across 4 example rats (Fig. 5B). This suggests that the fields in the different compartments were more similar than would be expected if they were forming independent representations.Figure 5.


Place field repetition and purely local remapping in a multicompartment environment.

Spiers HJ, Hayman RM, Jovalekic A, Marozzi E, Jeffery KJ - Cereb. Cortex (2013)

(A) Frequency histograms of the pairwise intercompartment correlations for the raw data (solid bars) and the shuffled data (hollow bars), showing a clear separation between the 2 distributions, reflective of the nonrandom relationship between place fields in different compartments. (B) The same correlation pattern held for individual animals, showing the generality of this effect. (C) The 1D autocorrelation plot, generated by progressively shifting the environment in the direction of the long axis (inset) and re-correlating at every step. The vertical axis represents the firing rate map correlation, with the central value at 1.0 (map correlated with itself). The horizontal axis indicates the extent of the environment in bins (72 in total). The shaded areas represent the standard errors. The correlations for the compartments (solid line) peaked at intervals corresponding to the width of a compartment, reflecting the underlying repetition of the place field map. This periodicity was also evident in the corridor fields (dotted line), although the peaks were slightly lower, reflecting the greater number of aperiodic place fields in the corridor.
© Copyright Policy - creative-commons
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4400414&req=5

BHT198F5: (A) Frequency histograms of the pairwise intercompartment correlations for the raw data (solid bars) and the shuffled data (hollow bars), showing a clear separation between the 2 distributions, reflective of the nonrandom relationship between place fields in different compartments. (B) The same correlation pattern held for individual animals, showing the generality of this effect. (C) The 1D autocorrelation plot, generated by progressively shifting the environment in the direction of the long axis (inset) and re-correlating at every step. The vertical axis represents the firing rate map correlation, with the central value at 1.0 (map correlated with itself). The horizontal axis indicates the extent of the environment in bins (72 in total). The shaded areas represent the standard errors. The correlations for the compartments (solid line) peaked at intervals corresponding to the width of a compartment, reflecting the underlying repetition of the place field map. This periodicity was also evident in the corridor fields (dotted line), although the peaks were slightly lower, reflecting the greater number of aperiodic place fields in the corridor.
Mentions: Self-similarity was quantified in 2 ways. First, we performed bin-by-bin correlations between each pair of boxes, yielding a total of 6 correlation coefficient values per cell, and compared these correlations with those generated by randomly comparing unrelated firing fields. The fields used in the random analysis comprised the entire set of firing rate maps, pooled, from which samples were drawn without replacement. A frequency histogram of the shuffled data revealed correlations clustered just below zero, while the ordered data showed a range of correlations with a high number of high correlations (Fig. 5A), a pattern that was consistent across 4 example rats (Fig. 5B). This suggests that the fields in the different compartments were more similar than would be expected if they were forming independent representations.Figure 5.

Bottom Line: Some studies report that place cells can disambiguate different compartments, while others report that they do not.Second, this repetition does not diminish with extended experience.Third, remapping was found to be purely local for both geometric change and contextual change.

View Article: PubMed Central - PubMed

Affiliation: Department of Cognitive, Perceptual and Brain Sciences, Division of Psychology and Language Sciences, Institute of Behavioural Neuroscience, University College London, UK.

Show MeSH
Related in: MedlinePlus