Limits...
Strengthening of 3D printed fused deposition manufactured parts using the fill compositing technique.

Belter JT, Dollar AM - PLoS ONE (2015)

Bottom Line: In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries.By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively.We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering and Material Science, Yale University, New Haven, Connecticut, United States of America.

ABSTRACT
In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

Show MeSH

Related in: MedlinePlus

The cross-sections of a printed open-end wrench that have been strengthened with fill compositing are shown in the bottom right.a) Solid printed ABS, b) Designed sparse fill with IE-3076 with wollastonite additive, c) Hollow channels filled with IE-3076 with wollastonite additive, d) Hollow print filled with IE-3076 with wollastonite additive. The top plot shows the torque and rotational displacement of each sample during destructive testing.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4400136&req=5

pone.0122915.g015: The cross-sections of a printed open-end wrench that have been strengthened with fill compositing are shown in the bottom right.a) Solid printed ABS, b) Designed sparse fill with IE-3076 with wollastonite additive, c) Hollow channels filled with IE-3076 with wollastonite additive, d) Hollow print filled with IE-3076 with wollastonite additive. The top plot shows the torque and rotational displacement of each sample during destructive testing.

Mentions: The final wrench component was filled with IE-3076 with wollastonite additive as shown in Fig 15. The torque on the end of the wrench was measured as a function of the angular displacement of the wrench around the stationary simulated nut. The results of the component tests are best summarized in Table 4.


Strengthening of 3D printed fused deposition manufactured parts using the fill compositing technique.

Belter JT, Dollar AM - PLoS ONE (2015)

The cross-sections of a printed open-end wrench that have been strengthened with fill compositing are shown in the bottom right.a) Solid printed ABS, b) Designed sparse fill with IE-3076 with wollastonite additive, c) Hollow channels filled with IE-3076 with wollastonite additive, d) Hollow print filled with IE-3076 with wollastonite additive. The top plot shows the torque and rotational displacement of each sample during destructive testing.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4400136&req=5

pone.0122915.g015: The cross-sections of a printed open-end wrench that have been strengthened with fill compositing are shown in the bottom right.a) Solid printed ABS, b) Designed sparse fill with IE-3076 with wollastonite additive, c) Hollow channels filled with IE-3076 with wollastonite additive, d) Hollow print filled with IE-3076 with wollastonite additive. The top plot shows the torque and rotational displacement of each sample during destructive testing.
Mentions: The final wrench component was filled with IE-3076 with wollastonite additive as shown in Fig 15. The torque on the end of the wrench was measured as a function of the angular displacement of the wrench around the stationary simulated nut. The results of the component tests are best summarized in Table 4.

Bottom Line: In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries.By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively.We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering and Material Science, Yale University, New Haven, Connecticut, United States of America.

ABSTRACT
In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

Show MeSH
Related in: MedlinePlus