Limits...
Strengthening of 3D printed fused deposition manufactured parts using the fill compositing technique.

Belter JT, Dollar AM - PLoS ONE (2015)

Bottom Line: In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries.By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively.We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering and Material Science, Yale University, New Haven, Connecticut, United States of America.

ABSTRACT
In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

Show MeSH

Related in: MedlinePlus

The flexure strength of the fill-composite sample using IE-3076 Urethane with wollastonite additive showed a large increase in stiffness over solid printed ABS samples.The letter labeling indicates the cross-section of the sample as illustrated in Fig 7. The solid printed ABS samples are shown for all printed orientations.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4400136&req=5

pone.0122915.g010: The flexure strength of the fill-composite sample using IE-3076 Urethane with wollastonite additive showed a large increase in stiffness over solid printed ABS samples.The letter labeling indicates the cross-section of the sample as illustrated in Fig 7. The solid printed ABS samples are shown for all printed orientations.

Mentions: In addition to the epoxy filled samples, IE-3076 urethane with 20% by weight wollastonite additive was tested. Fig 10 shows the flexural strength comparison between the solid printed ABS samples (all print orientations), and the various fill compositing techniques strengthened with IE-3076 urethane. The IE-3076 proved to greatly increase the stiffness of the samples resulting in a 25% improvement in stiffness over the best orientation of solid ABS. The IE-3076 with wollastonite additive also increased the flexure yield strength of the samples by 30%. These results are summarized in Table 3.


Strengthening of 3D printed fused deposition manufactured parts using the fill compositing technique.

Belter JT, Dollar AM - PLoS ONE (2015)

The flexure strength of the fill-composite sample using IE-3076 Urethane with wollastonite additive showed a large increase in stiffness over solid printed ABS samples.The letter labeling indicates the cross-section of the sample as illustrated in Fig 7. The solid printed ABS samples are shown for all printed orientations.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4400136&req=5

pone.0122915.g010: The flexure strength of the fill-composite sample using IE-3076 Urethane with wollastonite additive showed a large increase in stiffness over solid printed ABS samples.The letter labeling indicates the cross-section of the sample as illustrated in Fig 7. The solid printed ABS samples are shown for all printed orientations.
Mentions: In addition to the epoxy filled samples, IE-3076 urethane with 20% by weight wollastonite additive was tested. Fig 10 shows the flexural strength comparison between the solid printed ABS samples (all print orientations), and the various fill compositing techniques strengthened with IE-3076 urethane. The IE-3076 proved to greatly increase the stiffness of the samples resulting in a 25% improvement in stiffness over the best orientation of solid ABS. The IE-3076 with wollastonite additive also increased the flexure yield strength of the samples by 30%. These results are summarized in Table 3.

Bottom Line: In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries.By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively.We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering and Material Science, Yale University, New Haven, Connecticut, United States of America.

ABSTRACT
In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

Show MeSH
Related in: MedlinePlus