Limits...
Strengthening of 3D printed fused deposition manufactured parts using the fill compositing technique.

Belter JT, Dollar AM - PLoS ONE (2015)

Bottom Line: In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries.By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively.We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering and Material Science, Yale University, New Haven, Connecticut, United States of America.

ABSTRACT
In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

Show MeSH

Related in: MedlinePlus

Flexure strength to weight ratio of solid ABS samples compared to those manufactured using fill compositing.As a control, samples were also tested that were printed the ABS in the same geometry as the epoxy filled channel samples.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4400136&req=5

pone.0122915.g009: Flexure strength to weight ratio of solid ABS samples compared to those manufactured using fill compositing.As a control, samples were also tested that were printed the ABS in the same geometry as the epoxy filled channel samples.

Mentions: In addition to stronger components, many robotic applications have requirements related to reduced weight or increased stiffness. The data in Fig 9 shows the results of three-point bend testing with the flexure stress normalized by the density of the sample. It can be seen that the epoxy filled shell samples have a higher overall strength to weight ratio than all print orientations of solid ABS. Also, the epoxy filled channel samples showed the highest possible stiffness to weight ratio of all samples tested with epoxy infill. This compares well to the predicted improvement in weight and strength calculated in Fig 4. As a comparison, samples were printed and tested that had the same geometry as the epoxy filled channel samples, but completely printed in ABS. This shows the effect of both the geometry change as well as the epoxy reinforcement.


Strengthening of 3D printed fused deposition manufactured parts using the fill compositing technique.

Belter JT, Dollar AM - PLoS ONE (2015)

Flexure strength to weight ratio of solid ABS samples compared to those manufactured using fill compositing.As a control, samples were also tested that were printed the ABS in the same geometry as the epoxy filled channel samples.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4400136&req=5

pone.0122915.g009: Flexure strength to weight ratio of solid ABS samples compared to those manufactured using fill compositing.As a control, samples were also tested that were printed the ABS in the same geometry as the epoxy filled channel samples.
Mentions: In addition to stronger components, many robotic applications have requirements related to reduced weight or increased stiffness. The data in Fig 9 shows the results of three-point bend testing with the flexure stress normalized by the density of the sample. It can be seen that the epoxy filled shell samples have a higher overall strength to weight ratio than all print orientations of solid ABS. Also, the epoxy filled channel samples showed the highest possible stiffness to weight ratio of all samples tested with epoxy infill. This compares well to the predicted improvement in weight and strength calculated in Fig 4. As a comparison, samples were printed and tested that had the same geometry as the epoxy filled channel samples, but completely printed in ABS. This shows the effect of both the geometry change as well as the epoxy reinforcement.

Bottom Line: In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries.By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively.We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering and Material Science, Yale University, New Haven, Connecticut, United States of America.

ABSTRACT
In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

Show MeSH
Related in: MedlinePlus