Limits...
Strengthening of 3D printed fused deposition manufactured parts using the fill compositing technique.

Belter JT, Dollar AM - PLoS ONE (2015)

Bottom Line: In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries.By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively.We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering and Material Science, Yale University, New Haven, Connecticut, United States of America.

ABSTRACT
In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

Show MeSH

Related in: MedlinePlus

Flexure strength of 105–206 epoxy filled samples printed with various types of sparse infill.The black x indicates the location of failure and the black circle represents location of 0.2% yield strength. a) Insight hexagonal porous infill, b) Insight default sparse infill c) Designed sparse infill. The (v) or (h) indicates if the part was printed in the vertical or horizontal orientation.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4400136&req=5

pone.0122915.g006: Flexure strength of 105–206 epoxy filled samples printed with various types of sparse infill.The black x indicates the location of failure and the black circle represents location of 0.2% yield strength. a) Insight hexagonal porous infill, b) Insight default sparse infill c) Designed sparse infill. The (v) or (h) indicates if the part was printed in the vertical or horizontal orientation.

Mentions: To illustrate the importance of the sparse fill method, flexure testing was performed on samples with the three sparse fill techniques mentioned. To focus on the effects of the sparse infill method used, all samples were filled with West Systems 105–206 epoxy resin. Each set of samples contains parts that were printed in both the horizontal and vertical orientation. As is evident from Fig 6, the “designed” infill method led to a 43% improvement in flexural yield strength (as defined by a 0.2% deviation from pure elastic behavior) over the default sparse infill and a 87% increase in flexural yield strength over the “hexagonal porous” infill option. It is important to note that these infill techniques have different overall ABS and Resin densities based on the amount of ABS printed within the void. Without controlling for sparse infill density, we have shown that sparse infill can still be utilized with the fill compositing strengthening method if the proper infill parameters are used.


Strengthening of 3D printed fused deposition manufactured parts using the fill compositing technique.

Belter JT, Dollar AM - PLoS ONE (2015)

Flexure strength of 105–206 epoxy filled samples printed with various types of sparse infill.The black x indicates the location of failure and the black circle represents location of 0.2% yield strength. a) Insight hexagonal porous infill, b) Insight default sparse infill c) Designed sparse infill. The (v) or (h) indicates if the part was printed in the vertical or horizontal orientation.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4400136&req=5

pone.0122915.g006: Flexure strength of 105–206 epoxy filled samples printed with various types of sparse infill.The black x indicates the location of failure and the black circle represents location of 0.2% yield strength. a) Insight hexagonal porous infill, b) Insight default sparse infill c) Designed sparse infill. The (v) or (h) indicates if the part was printed in the vertical or horizontal orientation.
Mentions: To illustrate the importance of the sparse fill method, flexure testing was performed on samples with the three sparse fill techniques mentioned. To focus on the effects of the sparse infill method used, all samples were filled with West Systems 105–206 epoxy resin. Each set of samples contains parts that were printed in both the horizontal and vertical orientation. As is evident from Fig 6, the “designed” infill method led to a 43% improvement in flexural yield strength (as defined by a 0.2% deviation from pure elastic behavior) over the default sparse infill and a 87% increase in flexural yield strength over the “hexagonal porous” infill option. It is important to note that these infill techniques have different overall ABS and Resin densities based on the amount of ABS printed within the void. Without controlling for sparse infill density, we have shown that sparse infill can still be utilized with the fill compositing strengthening method if the proper infill parameters are used.

Bottom Line: In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries.By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively.We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering and Material Science, Yale University, New Haven, Connecticut, United States of America.

ABSTRACT
In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

Show MeSH
Related in: MedlinePlus