Limits...
Strengthening of 3D printed fused deposition manufactured parts using the fill compositing technique.

Belter JT, Dollar AM - PLoS ONE (2015)

Bottom Line: In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries.By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively.We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering and Material Science, Yale University, New Haven, Connecticut, United States of America.

ABSTRACT
In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

Show MeSH

Related in: MedlinePlus

Flexure stress comparison of three common resins with and without wollastonite additive.The black x indicates the location of failure and the black circle represents the 0.2% yield strength.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4400136&req=5

pone.0122915.g005: Flexure stress comparison of three common resins with and without wollastonite additive.The black x indicates the location of failure and the black circle represents the 0.2% yield strength.

Mentions: In addition to the stronger resins, additives were also investigated that improve resin strength and stiffness. Both short and long chopped glass fibers were tested in both the epoxy and the urethanes but did not significantly change the flexure strength of the tested samples. A 20% by weight addition of wollastonite (as suggested by the material manufacturer) was shown to greatly improve the stiffness of the urethane samples [22]. Fig 5 shows the flexure stress of the bulk materials cast into samples of the same geometry as described in the section “Flexural Testing of ‘Fill-Composite’ Samples”. The addition of wollastonite improved the flexure stiffness of both urethanes resins tested. Although adding chopped glass fibers to the bulk epoxy greatly increased the viscosity of the resin, a 20% by weight addition of wollastonite to the urethane materials proved to maintain a low enough viscosity to inject into the voids within the printed parts. As recommended by the material manufacturer, the resins were degassed in a vacuum chamber prior to injecting them into the 3D printed parts. During curing, the parts were placed into a pressure chamber at 60 psi to minimize bubble formation within the resin. We can see from Fig 5 that of the materials tested, the Urethane IE-3076 with 20% wollastonite proved to be the stiffest with unfilled IE-3076 providing the highest overall ultimate tensile strength.


Strengthening of 3D printed fused deposition manufactured parts using the fill compositing technique.

Belter JT, Dollar AM - PLoS ONE (2015)

Flexure stress comparison of three common resins with and without wollastonite additive.The black x indicates the location of failure and the black circle represents the 0.2% yield strength.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4400136&req=5

pone.0122915.g005: Flexure stress comparison of three common resins with and without wollastonite additive.The black x indicates the location of failure and the black circle represents the 0.2% yield strength.
Mentions: In addition to the stronger resins, additives were also investigated that improve resin strength and stiffness. Both short and long chopped glass fibers were tested in both the epoxy and the urethanes but did not significantly change the flexure strength of the tested samples. A 20% by weight addition of wollastonite (as suggested by the material manufacturer) was shown to greatly improve the stiffness of the urethane samples [22]. Fig 5 shows the flexure stress of the bulk materials cast into samples of the same geometry as described in the section “Flexural Testing of ‘Fill-Composite’ Samples”. The addition of wollastonite improved the flexure stiffness of both urethanes resins tested. Although adding chopped glass fibers to the bulk epoxy greatly increased the viscosity of the resin, a 20% by weight addition of wollastonite to the urethane materials proved to maintain a low enough viscosity to inject into the voids within the printed parts. As recommended by the material manufacturer, the resins were degassed in a vacuum chamber prior to injecting them into the 3D printed parts. During curing, the parts were placed into a pressure chamber at 60 psi to minimize bubble formation within the resin. We can see from Fig 5 that of the materials tested, the Urethane IE-3076 with 20% wollastonite proved to be the stiffest with unfilled IE-3076 providing the highest overall ultimate tensile strength.

Bottom Line: In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries.By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively.We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering and Material Science, Yale University, New Haven, Connecticut, United States of America.

ABSTRACT
In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

Show MeSH
Related in: MedlinePlus