Limits...
Strengthening of 3D printed fused deposition manufactured parts using the fill compositing technique.

Belter JT, Dollar AM - PLoS ONE (2015)

Bottom Line: In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries.By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively.We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering and Material Science, Yale University, New Haven, Connecticut, United States of America.

ABSTRACT
In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

Show MeSH

Related in: MedlinePlus

The process of fill compositing uses the original part geometry but takes advantage of voids designed into the printed component which are filled with higher-strength resin.The process is illustrated here with the proximal link of the i-HY [28] robot finger.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4400136&req=5

pone.0122915.g003: The process of fill compositing uses the original part geometry but takes advantage of voids designed into the printed component which are filled with higher-strength resin.The process is illustrated here with the proximal link of the i-HY [28] robot finger.

Mentions: By utilizing hollow voids and channels printed internally to the components as molds for casting materials, complex internal reinforcing structures can be made that provide an increase in part strength and stiffness. Although the bulk material properties of common casting materials including urethane and epoxy do not far exceed those of the bulk 3D printed material, as shown in Table 1, their properties are isotropic when molded and therefore do not exhibit the same orientation preferences as 3D printed materials. The process of strengthening a 3D printed part with the fill compositing technique is illustrated in Fig 3. Each of the three methods will be discussed in the following sections.


Strengthening of 3D printed fused deposition manufactured parts using the fill compositing technique.

Belter JT, Dollar AM - PLoS ONE (2015)

The process of fill compositing uses the original part geometry but takes advantage of voids designed into the printed component which are filled with higher-strength resin.The process is illustrated here with the proximal link of the i-HY [28] robot finger.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4400136&req=5

pone.0122915.g003: The process of fill compositing uses the original part geometry but takes advantage of voids designed into the printed component which are filled with higher-strength resin.The process is illustrated here with the proximal link of the i-HY [28] robot finger.
Mentions: By utilizing hollow voids and channels printed internally to the components as molds for casting materials, complex internal reinforcing structures can be made that provide an increase in part strength and stiffness. Although the bulk material properties of common casting materials including urethane and epoxy do not far exceed those of the bulk 3D printed material, as shown in Table 1, their properties are isotropic when molded and therefore do not exhibit the same orientation preferences as 3D printed materials. The process of strengthening a 3D printed part with the fill compositing technique is illustrated in Fig 3. Each of the three methods will be discussed in the following sections.

Bottom Line: In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries.By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively.We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering and Material Science, Yale University, New Haven, Connecticut, United States of America.

ABSTRACT
In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

Show MeSH
Related in: MedlinePlus