Limits...
Inhibition of inflammatory arthritis using fullerene nanomaterials.

Dellinger AL, Cunin P, Lee D, Kung AL, Brooks DB, Zhou Z, Nigrovic PA, Kepley CL - PLoS ONE (2015)

Bottom Line: It is shown that certain fullerene derivatives blocked FcγR- and TNF-α-induced mediator release from MC; TNF-α-induced mediator release from RA synovial fibroblasts; and maturation of human osteoclasts.Dye-conjugated fullerenes confirmed localization to affected joints in arthritic animals but not in healthy controls.In the K/BxN moldel, fullerenes attenuated arthritis, an effect accompanied by reduced histologic inflammation, cartilage/bone erosion, and serum levels of TNF-α.

View Article: PubMed Central - PubMed

Affiliation: University of North Carolina Greensboro, Joint School of Nanosceince and Nanoengineering, Greensboro, North Carolina, United States of America.

ABSTRACT
Inflammatory arthritis (e.g. rheumatoid arthritis; RA) is a complex disease driven by the interplay of multiple cellular lineages. Fullerene derivatives have previously been shown to have anti-inflammatory capabilities mediated, in part, by their ability to prevent inflammatory mediator release by mast cells (MC). Recognizing that MC can serve as a cellular link between autoantibodies, soluble mediators, and other effector populations in inflammatory arthritis, it was hypothesized that fullerene derivatives might be used to target this inflammatory disease. A panel of fullerene derivatives was tested for their ability to affect the function of human skin-derived MC as well as other lineages implicated in arthritis, synovial fibroblasts and osteoclasts. It is shown that certain fullerene derivatives blocked FcγR- and TNF-α-induced mediator release from MC; TNF-α-induced mediator release from RA synovial fibroblasts; and maturation of human osteoclasts. MC inhibition by fullerene derivatives was mediated through the reduction of mitochondrial membrane potential and FcγR-mediated increases in cellular reactive oxygen species and NF-κB activation. Based on these in vitro data, two fullerene derivatives (ALM and TGA) were selected for in vivo studies using K/BxN serum transfer arthritis in C57BL/6 mice and collagen-induced arthritis (CIA) in DBA/1 mice. Dye-conjugated fullerenes confirmed localization to affected joints in arthritic animals but not in healthy controls. In the K/BxN moldel, fullerenes attenuated arthritis, an effect accompanied by reduced histologic inflammation, cartilage/bone erosion, and serum levels of TNF-α. Fullerenes remained capable of attenuating K/BxN arthritis in mast cell-deficient mice Cre-Master mice, suggesting that lineages beyond the MC represent relevant targets in this system. These studies suggest that fullerene derivatives may hold promise both as an assessment tool and as anti-inflammatory therapy of arthritis.

No MeSH data available.


Related in: MedlinePlus

Fullerene derivatives attenuate inflammatory arthritis in the K/BxN but not CIA model.As shown in Fig 4A, C57Bl/6 (n = 5 mice/group) mice were injected with K/BxN serum as described in Methods. Two fullerene derivatives, TGA or ALM (40 μg/100 μl), were injected i.p. on Day 0, 2, and every second day. As a control 100 μl of PBS was injected in the control group. Measurements were taken every second day by a blinded observer. Error bars, ±SEM. The * indicates significant differences observed on that day in fullerene derivatives compared to non-fullerene-treated mice (see text). Fig 4B shows representative ankle sections from K/BxN treated C57Bl/6 mice without TGA (left) or with TGA (middle). Control mice not serum challenged are shown on the right. (Scale bars, 50 μm). Fig 4C shows disease pathogenesis in Cre-Master mice (n = 10 mice/group) with and without fullerene derivative, TGA, therapy as above. Fig 4D. Fullerene derivatives inhibit serum TNF-α levels in the K/BxN model and prevent the joint erosion induced by inflammatory arthritis. Serum levels were obtained at peak symptoms from K/BxN-induced C57Bl/6 mice and TNF-α measured as described (CIA model revealed no significant reductions) [36] (n = 5 mice per group).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4400016&req=5

pone.0126290.g004: Fullerene derivatives attenuate inflammatory arthritis in the K/BxN but not CIA model.As shown in Fig 4A, C57Bl/6 (n = 5 mice/group) mice were injected with K/BxN serum as described in Methods. Two fullerene derivatives, TGA or ALM (40 μg/100 μl), were injected i.p. on Day 0, 2, and every second day. As a control 100 μl of PBS was injected in the control group. Measurements were taken every second day by a blinded observer. Error bars, ±SEM. The * indicates significant differences observed on that day in fullerene derivatives compared to non-fullerene-treated mice (see text). Fig 4B shows representative ankle sections from K/BxN treated C57Bl/6 mice without TGA (left) or with TGA (middle). Control mice not serum challenged are shown on the right. (Scale bars, 50 μm). Fig 4C shows disease pathogenesis in Cre-Master mice (n = 10 mice/group) with and without fullerene derivative, TGA, therapy as above. Fig 4D. Fullerene derivatives inhibit serum TNF-α levels in the K/BxN model and prevent the joint erosion induced by inflammatory arthritis. Serum levels were obtained at peak symptoms from K/BxN-induced C57Bl/6 mice and TNF-α measured as described (CIA model revealed no significant reductions) [36] (n = 5 mice per group).

Mentions: Given our results demonstrating the ability of fullerene derivatives to inhibit MC-mediated diseases [24,25,46] as well as general [28] inflammation, it was hypothesized that fullerene derivatives may reduce the severity of inflammatory arthritis in vivo, in part by inhibiting MC function. Both ALM and TGA strikingly inhibited K/BxN-induced arthritis in B6 mice (Fig 4A). Histochemically, the serum-treated mice demonstrated typical synovial hyperplasia, pannus formation, and inflammatory infiltrates (Fig 4B -top). In contrast, TGA treated animals had less evidence of clinical joint inflammation (Fig 4B -middle) which was comparable to non-diseased animals (Fig 4B -bottom). A critical functional role for MC cells in arthritis pathogenesis has been suggested in K/BxN serum transfer arthritis [29] while more recent studies using a Kit-independent model for MC-deficiency were fully susceptible to antibody-induced autoimmune arthritis, as Kit mutations affect numerous cell types of both immune and non-immune origin [50]. To this end, Cre-mediated mast cell eradication (Cre-master) mice are used to obviate the deleterious effects associated with Kit mutated mice. To test whether this effect was attributable to MC, we replicated the experiment (TGA fullerene only) in MC-deficient Cre-Master mice. A detectable fullerene induced effect remained (Fig 4C) in the MC deficient mice. It is important to note that the untreated K/BxN induced MC-deficient mice were still susceptible to inflammatory arthritis onset, reiterating that the K/BxN model is not MC-driven, but the fullerenes could still ameliorate disease progression despite the absence of MC. These studies suggest that the effect of the fullerenes tested is mediated by multiple cell lineages.


Inhibition of inflammatory arthritis using fullerene nanomaterials.

Dellinger AL, Cunin P, Lee D, Kung AL, Brooks DB, Zhou Z, Nigrovic PA, Kepley CL - PLoS ONE (2015)

Fullerene derivatives attenuate inflammatory arthritis in the K/BxN but not CIA model.As shown in Fig 4A, C57Bl/6 (n = 5 mice/group) mice were injected with K/BxN serum as described in Methods. Two fullerene derivatives, TGA or ALM (40 μg/100 μl), were injected i.p. on Day 0, 2, and every second day. As a control 100 μl of PBS was injected in the control group. Measurements were taken every second day by a blinded observer. Error bars, ±SEM. The * indicates significant differences observed on that day in fullerene derivatives compared to non-fullerene-treated mice (see text). Fig 4B shows representative ankle sections from K/BxN treated C57Bl/6 mice without TGA (left) or with TGA (middle). Control mice not serum challenged are shown on the right. (Scale bars, 50 μm). Fig 4C shows disease pathogenesis in Cre-Master mice (n = 10 mice/group) with and without fullerene derivative, TGA, therapy as above. Fig 4D. Fullerene derivatives inhibit serum TNF-α levels in the K/BxN model and prevent the joint erosion induced by inflammatory arthritis. Serum levels were obtained at peak symptoms from K/BxN-induced C57Bl/6 mice and TNF-α measured as described (CIA model revealed no significant reductions) [36] (n = 5 mice per group).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4400016&req=5

pone.0126290.g004: Fullerene derivatives attenuate inflammatory arthritis in the K/BxN but not CIA model.As shown in Fig 4A, C57Bl/6 (n = 5 mice/group) mice were injected with K/BxN serum as described in Methods. Two fullerene derivatives, TGA or ALM (40 μg/100 μl), were injected i.p. on Day 0, 2, and every second day. As a control 100 μl of PBS was injected in the control group. Measurements were taken every second day by a blinded observer. Error bars, ±SEM. The * indicates significant differences observed on that day in fullerene derivatives compared to non-fullerene-treated mice (see text). Fig 4B shows representative ankle sections from K/BxN treated C57Bl/6 mice without TGA (left) or with TGA (middle). Control mice not serum challenged are shown on the right. (Scale bars, 50 μm). Fig 4C shows disease pathogenesis in Cre-Master mice (n = 10 mice/group) with and without fullerene derivative, TGA, therapy as above. Fig 4D. Fullerene derivatives inhibit serum TNF-α levels in the K/BxN model and prevent the joint erosion induced by inflammatory arthritis. Serum levels were obtained at peak symptoms from K/BxN-induced C57Bl/6 mice and TNF-α measured as described (CIA model revealed no significant reductions) [36] (n = 5 mice per group).
Mentions: Given our results demonstrating the ability of fullerene derivatives to inhibit MC-mediated diseases [24,25,46] as well as general [28] inflammation, it was hypothesized that fullerene derivatives may reduce the severity of inflammatory arthritis in vivo, in part by inhibiting MC function. Both ALM and TGA strikingly inhibited K/BxN-induced arthritis in B6 mice (Fig 4A). Histochemically, the serum-treated mice demonstrated typical synovial hyperplasia, pannus formation, and inflammatory infiltrates (Fig 4B -top). In contrast, TGA treated animals had less evidence of clinical joint inflammation (Fig 4B -middle) which was comparable to non-diseased animals (Fig 4B -bottom). A critical functional role for MC cells in arthritis pathogenesis has been suggested in K/BxN serum transfer arthritis [29] while more recent studies using a Kit-independent model for MC-deficiency were fully susceptible to antibody-induced autoimmune arthritis, as Kit mutations affect numerous cell types of both immune and non-immune origin [50]. To this end, Cre-mediated mast cell eradication (Cre-master) mice are used to obviate the deleterious effects associated with Kit mutated mice. To test whether this effect was attributable to MC, we replicated the experiment (TGA fullerene only) in MC-deficient Cre-Master mice. A detectable fullerene induced effect remained (Fig 4C) in the MC deficient mice. It is important to note that the untreated K/BxN induced MC-deficient mice were still susceptible to inflammatory arthritis onset, reiterating that the K/BxN model is not MC-driven, but the fullerenes could still ameliorate disease progression despite the absence of MC. These studies suggest that the effect of the fullerenes tested is mediated by multiple cell lineages.

Bottom Line: It is shown that certain fullerene derivatives blocked FcγR- and TNF-α-induced mediator release from MC; TNF-α-induced mediator release from RA synovial fibroblasts; and maturation of human osteoclasts.Dye-conjugated fullerenes confirmed localization to affected joints in arthritic animals but not in healthy controls.In the K/BxN moldel, fullerenes attenuated arthritis, an effect accompanied by reduced histologic inflammation, cartilage/bone erosion, and serum levels of TNF-α.

View Article: PubMed Central - PubMed

Affiliation: University of North Carolina Greensboro, Joint School of Nanosceince and Nanoengineering, Greensboro, North Carolina, United States of America.

ABSTRACT
Inflammatory arthritis (e.g. rheumatoid arthritis; RA) is a complex disease driven by the interplay of multiple cellular lineages. Fullerene derivatives have previously been shown to have anti-inflammatory capabilities mediated, in part, by their ability to prevent inflammatory mediator release by mast cells (MC). Recognizing that MC can serve as a cellular link between autoantibodies, soluble mediators, and other effector populations in inflammatory arthritis, it was hypothesized that fullerene derivatives might be used to target this inflammatory disease. A panel of fullerene derivatives was tested for their ability to affect the function of human skin-derived MC as well as other lineages implicated in arthritis, synovial fibroblasts and osteoclasts. It is shown that certain fullerene derivatives blocked FcγR- and TNF-α-induced mediator release from MC; TNF-α-induced mediator release from RA synovial fibroblasts; and maturation of human osteoclasts. MC inhibition by fullerene derivatives was mediated through the reduction of mitochondrial membrane potential and FcγR-mediated increases in cellular reactive oxygen species and NF-κB activation. Based on these in vitro data, two fullerene derivatives (ALM and TGA) were selected for in vivo studies using K/BxN serum transfer arthritis in C57BL/6 mice and collagen-induced arthritis (CIA) in DBA/1 mice. Dye-conjugated fullerenes confirmed localization to affected joints in arthritic animals but not in healthy controls. In the K/BxN moldel, fullerenes attenuated arthritis, an effect accompanied by reduced histologic inflammation, cartilage/bone erosion, and serum levels of TNF-α. Fullerenes remained capable of attenuating K/BxN arthritis in mast cell-deficient mice Cre-Master mice, suggesting that lineages beyond the MC represent relevant targets in this system. These studies suggest that fullerene derivatives may hold promise both as an assessment tool and as anti-inflammatory therapy of arthritis.

No MeSH data available.


Related in: MedlinePlus