Limits...
Hemodynamic changes following aortic valve bypass: a mathematical approach.

Benevento E, Djebbari A, Keshavarz-Motamed Z, Cecere R, Kadem L - PLoS ONE (2015)

Bottom Line: Results showed that the AVB leads to a significant reduction in transvalvular pressure gradient.LV stroke work was also significantly reduced following the AVB surgery and reached a value of around 1.2 J for several AS severities.Findings of this study suggest: 1) the AVB leads to a significant reduction in transvalvular pressure gradients; 2) flow distribution between the AS and the AVB is significantly affected by the conduit valve size; 3) the AVB leads to a significant reduction in LV stroke work; and 4) hemodynamic performance variations can be estimated using the model.

View Article: PubMed Central - PubMed

Affiliation: Mechanical and Industrial Engineering Department, Concordia University, Montreal, Québec, Canada.

ABSTRACT
Aortic valve bypass (AVB) has been shown to be a viable solution for patients with severe aortic stenosis (AS). Under this circumstance, the left ventricle (LV) has a double outlet. The objective was to develop a mathematical model capable of evaluating the hemodynamic performance following the AVB surgery. A mathematical model that captures the interaction between LV, AS, arterial system, and AVB was developed. This model uses a limited number of parameters that all can be non-invasively measured using patient data. The model was validated using in vivo data from the literature. The model was used to determine the effect of different AVB and AS configurations on flow proportion and pressure of the aortic valve and the AVB. Results showed that the AVB leads to a significant reduction in transvalvular pressure gradient. The percentage of flow through the AVB can range from 55.47% to 69.43% following AVB with a severe AS. LV stroke work was also significantly reduced following the AVB surgery and reached a value of around 1.2 J for several AS severities. Findings of this study suggest: 1) the AVB leads to a significant reduction in transvalvular pressure gradients; 2) flow distribution between the AS and the AVB is significantly affected by the conduit valve size; 3) the AVB leads to a significant reduction in LV stroke work; and 4) hemodynamic performance variations can be estimated using the model.

No MeSH data available.


Related in: MedlinePlus

Simulated left ventricle and aorta pressures.(A) Healthy (No AS & No AVB), (B) severe AS (EOA = 0.7 cm2) & No AVB. Stroke volume, heart rate and cardiac output are 75 ml, 70 beats/min and 5.2 l/min, respectively.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4400014&req=5

pone.0123000.g002: Simulated left ventricle and aorta pressures.(A) Healthy (No AS & No AVB), (B) severe AS (EOA = 0.7 cm2) & No AVB. Stroke volume, heart rate and cardiac output are 75 ml, 70 beats/min and 5.2 l/min, respectively.

Mentions: Fig 2 shows the LV and aortic waveforms simulated using the current model for: 1) a healthy aortic valve (no AS: EOA = 4 cm2); 2) severe AS with EOA of 0.7 cm2. As expected, the presence of a severe AS induces very large transvalvular pressure gradients: TPGmax = 99 mmHg; TPGmean = 52 mmHg. The results for an EOA of 0.7 cm2 are displayed because this EOA corresponds to the median value reported in the study of Lund et al. [5] for patients with AVB.


Hemodynamic changes following aortic valve bypass: a mathematical approach.

Benevento E, Djebbari A, Keshavarz-Motamed Z, Cecere R, Kadem L - PLoS ONE (2015)

Simulated left ventricle and aorta pressures.(A) Healthy (No AS & No AVB), (B) severe AS (EOA = 0.7 cm2) & No AVB. Stroke volume, heart rate and cardiac output are 75 ml, 70 beats/min and 5.2 l/min, respectively.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4400014&req=5

pone.0123000.g002: Simulated left ventricle and aorta pressures.(A) Healthy (No AS & No AVB), (B) severe AS (EOA = 0.7 cm2) & No AVB. Stroke volume, heart rate and cardiac output are 75 ml, 70 beats/min and 5.2 l/min, respectively.
Mentions: Fig 2 shows the LV and aortic waveforms simulated using the current model for: 1) a healthy aortic valve (no AS: EOA = 4 cm2); 2) severe AS with EOA of 0.7 cm2. As expected, the presence of a severe AS induces very large transvalvular pressure gradients: TPGmax = 99 mmHg; TPGmean = 52 mmHg. The results for an EOA of 0.7 cm2 are displayed because this EOA corresponds to the median value reported in the study of Lund et al. [5] for patients with AVB.

Bottom Line: Results showed that the AVB leads to a significant reduction in transvalvular pressure gradient.LV stroke work was also significantly reduced following the AVB surgery and reached a value of around 1.2 J for several AS severities.Findings of this study suggest: 1) the AVB leads to a significant reduction in transvalvular pressure gradients; 2) flow distribution between the AS and the AVB is significantly affected by the conduit valve size; 3) the AVB leads to a significant reduction in LV stroke work; and 4) hemodynamic performance variations can be estimated using the model.

View Article: PubMed Central - PubMed

Affiliation: Mechanical and Industrial Engineering Department, Concordia University, Montreal, Québec, Canada.

ABSTRACT
Aortic valve bypass (AVB) has been shown to be a viable solution for patients with severe aortic stenosis (AS). Under this circumstance, the left ventricle (LV) has a double outlet. The objective was to develop a mathematical model capable of evaluating the hemodynamic performance following the AVB surgery. A mathematical model that captures the interaction between LV, AS, arterial system, and AVB was developed. This model uses a limited number of parameters that all can be non-invasively measured using patient data. The model was validated using in vivo data from the literature. The model was used to determine the effect of different AVB and AS configurations on flow proportion and pressure of the aortic valve and the AVB. Results showed that the AVB leads to a significant reduction in transvalvular pressure gradient. The percentage of flow through the AVB can range from 55.47% to 69.43% following AVB with a severe AS. LV stroke work was also significantly reduced following the AVB surgery and reached a value of around 1.2 J for several AS severities. Findings of this study suggest: 1) the AVB leads to a significant reduction in transvalvular pressure gradients; 2) flow distribution between the AS and the AVB is significantly affected by the conduit valve size; 3) the AVB leads to a significant reduction in LV stroke work; and 4) hemodynamic performance variations can be estimated using the model.

No MeSH data available.


Related in: MedlinePlus