Limits...
Nitrogen Starvation Acclimation in Synechococcus elongatus: Redox-Control and the Role of Nitrate Reduction as an Electron Sink.

Klotz A, Reinhold E, Doello S, Forchhammer K - Life (Basel) (2015)

Bottom Line: This study established a method that allows uncoupling metabolic and redox-signals involved in nitrogen-starvation acclimation.This study demonstrates that nitrogen starvation is perceived not only through metabolic signals, but requires a redox signal indicating over-reduction of PSI-reduced electron acceptors.It further establishes a cryptic role of nitrate/nitrite reductases as electron sinks to balance conditions of over-reduction.

View Article: PubMed Central - PubMed

Affiliation: Interfakultäres Institut für Mikrobiologie und Infektionsmedizin der Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany. alexander.klotz@uni-tuebingen.de.

ABSTRACT
Nitrogen starvation acclimation in non-diazotrophic cyanobacteria is characterized by a process termed chlorosis, where the light harvesting pigments are degraded and the cells gradually tune down photosynthetic and metabolic activities. The chlorosis response is governed by a complex and poorly understood regulatory network, which converges at the expression of the nblA gene, the triggering factor for phycobiliprotein degradation. This study established a method that allows uncoupling metabolic and redox-signals involved in nitrogen-starvation acclimation. Inhibition of glutamine synthetase (GS) by a precise dosage of l-methionine-sulfoximine (MSX) mimics the metabolic situation of nitrogen starvation. Addition of nitrate to such MSX-inhibited cells eliminates the associated redox-stress by enabling electron flow towards nitrate/nitrite reduction and thereby, prevents the induction of nblA expression and the associated chlorosis response. This study demonstrates that nitrogen starvation is perceived not only through metabolic signals, but requires a redox signal indicating over-reduction of PSI-reduced electron acceptors. It further establishes a cryptic role of nitrate/nitrite reductases as electron sinks to balance conditions of over-reduction.

No MeSH data available.


Related in: MedlinePlus

Bioluminescence measurement of nblA expression within 5 h after 2 µM MSX treatment and different amounts of ammonia (5 mM and 25 mM).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4390884&req=5

life-05-00888-f009: Bioluminescence measurement of nblA expression within 5 h after 2 µM MSX treatment and different amounts of ammonia (5 mM and 25 mM).

Mentions: When the WT-C 103 cells were treated with MSX in the presence of 25 mM ammonium, a drastic reduction of nblA induction was observed, indicating that in fact the electron transport and not the light per se is required for inducing nblA expression shown in Figure 9. Control experiments revealed that the addition of MSX does not strongly inhibit photosynthetic oxygen evolution (Supplementary Table S1).


Nitrogen Starvation Acclimation in Synechococcus elongatus: Redox-Control and the Role of Nitrate Reduction as an Electron Sink.

Klotz A, Reinhold E, Doello S, Forchhammer K - Life (Basel) (2015)

Bioluminescence measurement of nblA expression within 5 h after 2 µM MSX treatment and different amounts of ammonia (5 mM and 25 mM).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4390884&req=5

life-05-00888-f009: Bioluminescence measurement of nblA expression within 5 h after 2 µM MSX treatment and different amounts of ammonia (5 mM and 25 mM).
Mentions: When the WT-C 103 cells were treated with MSX in the presence of 25 mM ammonium, a drastic reduction of nblA induction was observed, indicating that in fact the electron transport and not the light per se is required for inducing nblA expression shown in Figure 9. Control experiments revealed that the addition of MSX does not strongly inhibit photosynthetic oxygen evolution (Supplementary Table S1).

Bottom Line: This study established a method that allows uncoupling metabolic and redox-signals involved in nitrogen-starvation acclimation.This study demonstrates that nitrogen starvation is perceived not only through metabolic signals, but requires a redox signal indicating over-reduction of PSI-reduced electron acceptors.It further establishes a cryptic role of nitrate/nitrite reductases as electron sinks to balance conditions of over-reduction.

View Article: PubMed Central - PubMed

Affiliation: Interfakultäres Institut für Mikrobiologie und Infektionsmedizin der Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany. alexander.klotz@uni-tuebingen.de.

ABSTRACT
Nitrogen starvation acclimation in non-diazotrophic cyanobacteria is characterized by a process termed chlorosis, where the light harvesting pigments are degraded and the cells gradually tune down photosynthetic and metabolic activities. The chlorosis response is governed by a complex and poorly understood regulatory network, which converges at the expression of the nblA gene, the triggering factor for phycobiliprotein degradation. This study established a method that allows uncoupling metabolic and redox-signals involved in nitrogen-starvation acclimation. Inhibition of glutamine synthetase (GS) by a precise dosage of l-methionine-sulfoximine (MSX) mimics the metabolic situation of nitrogen starvation. Addition of nitrate to such MSX-inhibited cells eliminates the associated redox-stress by enabling electron flow towards nitrate/nitrite reduction and thereby, prevents the induction of nblA expression and the associated chlorosis response. This study demonstrates that nitrogen starvation is perceived not only through metabolic signals, but requires a redox signal indicating over-reduction of PSI-reduced electron acceptors. It further establishes a cryptic role of nitrate/nitrite reductases as electron sinks to balance conditions of over-reduction.

No MeSH data available.


Related in: MedlinePlus