Limits...
Conserved RNA-binding proteins required for dendrite morphogenesis in Caenorhabditis elegans sensory neurons.

Antonacci S, Forand D, Wolf M, Tyus C, Barney J, Kellogg L, Simon MA, Kerr G, Wells KL, Younes S, Mortimer NT, Olesnicky EC, Killian DJ - G3 (Bethesda) (2015)

Bottom Line: Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons.Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species.Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903.

Show MeSH

Related in: MedlinePlus

A time course analysis of dendrite development reveals defects in dendrite formation, dendrite maintenance, and timing. Control (ctl) or mutant animals were scored for the number of PVD dendritic termini, as before, at the mid-L4, young adult, adult (18 hr after the young adult), and sometimes late adult (48 hr after the young adult) stages. All data points for mutants are significantly different from controls based on a one-way analysis of variance (ANOVA) test with a Fisher’s Least Significant Difference multiple comparisons test with a 95% confidence interval. Data points are the mean values where n = 80 for each genotype. Error bars show the standard error of the mean. (A) Mutants indicated have a dendrite formation defect. (B) Mutants indicated have a dendrite maintenance defect in the L4 stage. Mutant values at each time point are significantly different from each other time point based on a one-way ANOVA test with a Fisher's Least Significant Difference multiple comparisons test with a 95% confidence interval. (C) cgh-1 mutants have a delay in dendritic termini formation.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4390579&req=5

fig3: A time course analysis of dendrite development reveals defects in dendrite formation, dendrite maintenance, and timing. Control (ctl) or mutant animals were scored for the number of PVD dendritic termini, as before, at the mid-L4, young adult, adult (18 hr after the young adult), and sometimes late adult (48 hr after the young adult) stages. All data points for mutants are significantly different from controls based on a one-way analysis of variance (ANOVA) test with a Fisher’s Least Significant Difference multiple comparisons test with a 95% confidence interval. Data points are the mean values where n = 80 for each genotype. Error bars show the standard error of the mean. (A) Mutants indicated have a dendrite formation defect. (B) Mutants indicated have a dendrite maintenance defect in the L4 stage. Mutant values at each time point are significantly different from each other time point based on a one-way ANOVA test with a Fisher's Least Significant Difference multiple comparisons test with a 95% confidence interval. (C) cgh-1 mutants have a delay in dendritic termini formation.

Mentions: We found a statistically significant reduction of dendritic termini in cpb-3, dcr-1, larp-5, mbl-1, mtr-4, set-2, rsp-6, and Y55F3AM.3 mutants relative to the control at all stages (Figure 3A). This finding suggests that these mutants fail to form the appropriate number of terminal branches and that there is neither a delay nor a maintenance defect.


Conserved RNA-binding proteins required for dendrite morphogenesis in Caenorhabditis elegans sensory neurons.

Antonacci S, Forand D, Wolf M, Tyus C, Barney J, Kellogg L, Simon MA, Kerr G, Wells KL, Younes S, Mortimer NT, Olesnicky EC, Killian DJ - G3 (Bethesda) (2015)

A time course analysis of dendrite development reveals defects in dendrite formation, dendrite maintenance, and timing. Control (ctl) or mutant animals were scored for the number of PVD dendritic termini, as before, at the mid-L4, young adult, adult (18 hr after the young adult), and sometimes late adult (48 hr after the young adult) stages. All data points for mutants are significantly different from controls based on a one-way analysis of variance (ANOVA) test with a Fisher’s Least Significant Difference multiple comparisons test with a 95% confidence interval. Data points are the mean values where n = 80 for each genotype. Error bars show the standard error of the mean. (A) Mutants indicated have a dendrite formation defect. (B) Mutants indicated have a dendrite maintenance defect in the L4 stage. Mutant values at each time point are significantly different from each other time point based on a one-way ANOVA test with a Fisher's Least Significant Difference multiple comparisons test with a 95% confidence interval. (C) cgh-1 mutants have a delay in dendritic termini formation.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4390579&req=5

fig3: A time course analysis of dendrite development reveals defects in dendrite formation, dendrite maintenance, and timing. Control (ctl) or mutant animals were scored for the number of PVD dendritic termini, as before, at the mid-L4, young adult, adult (18 hr after the young adult), and sometimes late adult (48 hr after the young adult) stages. All data points for mutants are significantly different from controls based on a one-way analysis of variance (ANOVA) test with a Fisher’s Least Significant Difference multiple comparisons test with a 95% confidence interval. Data points are the mean values where n = 80 for each genotype. Error bars show the standard error of the mean. (A) Mutants indicated have a dendrite formation defect. (B) Mutants indicated have a dendrite maintenance defect in the L4 stage. Mutant values at each time point are significantly different from each other time point based on a one-way ANOVA test with a Fisher's Least Significant Difference multiple comparisons test with a 95% confidence interval. (C) cgh-1 mutants have a delay in dendritic termini formation.
Mentions: We found a statistically significant reduction of dendritic termini in cpb-3, dcr-1, larp-5, mbl-1, mtr-4, set-2, rsp-6, and Y55F3AM.3 mutants relative to the control at all stages (Figure 3A). This finding suggests that these mutants fail to form the appropriate number of terminal branches and that there is neither a delay nor a maintenance defect.

Bottom Line: Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons.Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species.Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903.

Show MeSH
Related in: MedlinePlus