Limits...
Parasite prevalence corresponds to host life history in a diverse assemblage of afrotropical birds and haemosporidian parasites.

Lutz HL, Hochachka WM, Engel JI, Bell JA, Tkach VV, Bates JM, Hackett SJ, Weckstein JD - PLoS ONE (2015)

Bottom Line: We found that host life history traits were significantly associated with parasitism rates by all three parasite genera.Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species.A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi.

View Article: PubMed Central - PubMed

Affiliation: Department of Ecology and Evolutionary Biology, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York, United States of America; Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America; Cornell Lab of Ornithology, Cornell University, Ithaca, New York, United States of America; Department of Zoology, Field Museum of Natural History, Chicago, Illinois, United States of America.

ABSTRACT
Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi.

No MeSH data available.


Related in: MedlinePlus

Predicted (least-squares mean) probabilities of parasitism and their 95% confidence intervals.Expected rates of parasitism illustrated according to (a—c) host nest type, (d—f) host nest location, (g—h) host flocking behavior, and (i) habitat. For all panels, Plasmodium is represented by a black diamond and the letter “P”, Haemoproteus is represented by a black square and the letter “H”, and Leucocytozoon is represented by a black circle and the letter “L”. Number of individuals and species comprising each trait are listed below their respective traits (number of individuals above, number of species below in parentheses). Note that the parasitism rate of zero has been plotted for the aquatic habitat without confidence intervals; because the four individual aquatic-habitat birds sampled lack Leucocytozoon infections and therefore could not be used in the statistical analysis (as noted in the Methods section) Thus no measure of statistical confidence is associated with this aquatic habitat plotted point.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4390322&req=5

pone.0121254.g002: Predicted (least-squares mean) probabilities of parasitism and their 95% confidence intervals.Expected rates of parasitism illustrated according to (a—c) host nest type, (d—f) host nest location, (g—h) host flocking behavior, and (i) habitat. For all panels, Plasmodium is represented by a black diamond and the letter “P”, Haemoproteus is represented by a black square and the letter “H”, and Leucocytozoon is represented by a black circle and the letter “L”. Number of individuals and species comprising each trait are listed below their respective traits (number of individuals above, number of species below in parentheses). Note that the parasitism rate of zero has been plotted for the aquatic habitat without confidence intervals; because the four individual aquatic-habitat birds sampled lack Leucocytozoon infections and therefore could not be used in the statistical analysis (as noted in the Methods section) Thus no measure of statistical confidence is associated with this aquatic habitat plotted point.

Mentions: Host nest type and location were important predictors of infection for all three parasite genera (Table 5). We also found that host flocking behavior was an important predictor of Plasmodium and Haemoproteus infections, and that habitat was an important predictor of infection by Leucocytozoon only (Fig. 2A-I). In general, cisticolas (Cisticolidae), weavers (Ploceidae), and estrildid finches (Estrildidae), all of which build closed cup nests and thrive in a range of habitats, were frequently parasitized by Plasmodium (Table 6). Greenbuls (Pycnonotidae) and white-eyes (Zosteropidae), on the other hand, experienced low rates of parasitism by Plasmodium and high rates of parasitism by Leucocytozoon and Haemoproteus. Pigeons and doves (Columbidae) sampled in this study were primarily parasitized by Haemoproteus parasites in the subgenus Parahaemoproteus (unpublished molecular analyses). However, one individual (African olive pigeon) was parasitized by a novel Haemoproteus lineage that was most closely related to the strigiform parasite Haemoproteus syrnii (subgenus Haemoproteus). Notably, no nightjars (Caprimulgiformes) sampled in this study (n = 8) were parasitized. Caprimulgiform species sampled included Fiery-necked Nightjar (Caprimulgus pectoralis), Square-tailed Nightjar (Scotornis fossii), and Ruwenzori Nightjar (Caprimulgus poliocephalus), all of which are solitary, open cup, ground-nesting species. Host-parasite association data for all individuals sampled are summarized in S2 Table.


Parasite prevalence corresponds to host life history in a diverse assemblage of afrotropical birds and haemosporidian parasites.

Lutz HL, Hochachka WM, Engel JI, Bell JA, Tkach VV, Bates JM, Hackett SJ, Weckstein JD - PLoS ONE (2015)

Predicted (least-squares mean) probabilities of parasitism and their 95% confidence intervals.Expected rates of parasitism illustrated according to (a—c) host nest type, (d—f) host nest location, (g—h) host flocking behavior, and (i) habitat. For all panels, Plasmodium is represented by a black diamond and the letter “P”, Haemoproteus is represented by a black square and the letter “H”, and Leucocytozoon is represented by a black circle and the letter “L”. Number of individuals and species comprising each trait are listed below their respective traits (number of individuals above, number of species below in parentheses). Note that the parasitism rate of zero has been plotted for the aquatic habitat without confidence intervals; because the four individual aquatic-habitat birds sampled lack Leucocytozoon infections and therefore could not be used in the statistical analysis (as noted in the Methods section) Thus no measure of statistical confidence is associated with this aquatic habitat plotted point.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4390322&req=5

pone.0121254.g002: Predicted (least-squares mean) probabilities of parasitism and their 95% confidence intervals.Expected rates of parasitism illustrated according to (a—c) host nest type, (d—f) host nest location, (g—h) host flocking behavior, and (i) habitat. For all panels, Plasmodium is represented by a black diamond and the letter “P”, Haemoproteus is represented by a black square and the letter “H”, and Leucocytozoon is represented by a black circle and the letter “L”. Number of individuals and species comprising each trait are listed below their respective traits (number of individuals above, number of species below in parentheses). Note that the parasitism rate of zero has been plotted for the aquatic habitat without confidence intervals; because the four individual aquatic-habitat birds sampled lack Leucocytozoon infections and therefore could not be used in the statistical analysis (as noted in the Methods section) Thus no measure of statistical confidence is associated with this aquatic habitat plotted point.
Mentions: Host nest type and location were important predictors of infection for all three parasite genera (Table 5). We also found that host flocking behavior was an important predictor of Plasmodium and Haemoproteus infections, and that habitat was an important predictor of infection by Leucocytozoon only (Fig. 2A-I). In general, cisticolas (Cisticolidae), weavers (Ploceidae), and estrildid finches (Estrildidae), all of which build closed cup nests and thrive in a range of habitats, were frequently parasitized by Plasmodium (Table 6). Greenbuls (Pycnonotidae) and white-eyes (Zosteropidae), on the other hand, experienced low rates of parasitism by Plasmodium and high rates of parasitism by Leucocytozoon and Haemoproteus. Pigeons and doves (Columbidae) sampled in this study were primarily parasitized by Haemoproteus parasites in the subgenus Parahaemoproteus (unpublished molecular analyses). However, one individual (African olive pigeon) was parasitized by a novel Haemoproteus lineage that was most closely related to the strigiform parasite Haemoproteus syrnii (subgenus Haemoproteus). Notably, no nightjars (Caprimulgiformes) sampled in this study (n = 8) were parasitized. Caprimulgiform species sampled included Fiery-necked Nightjar (Caprimulgus pectoralis), Square-tailed Nightjar (Scotornis fossii), and Ruwenzori Nightjar (Caprimulgus poliocephalus), all of which are solitary, open cup, ground-nesting species. Host-parasite association data for all individuals sampled are summarized in S2 Table.

Bottom Line: We found that host life history traits were significantly associated with parasitism rates by all three parasite genera.Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species.A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi.

View Article: PubMed Central - PubMed

Affiliation: Department of Ecology and Evolutionary Biology, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York, United States of America; Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America; Cornell Lab of Ornithology, Cornell University, Ithaca, New York, United States of America; Department of Zoology, Field Museum of Natural History, Chicago, Illinois, United States of America.

ABSTRACT
Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi.

No MeSH data available.


Related in: MedlinePlus