Limits...
Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults.

Scofield HN, Mattila HR - PLoS ONE (2015)

Bottom Line: The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates.Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers.Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction.

View Article: PubMed Central - PubMed

Affiliation: Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America.

ABSTRACT
The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates. We examined the effects of larval nutritional stress on the foraging and recruitment behavior of an economically important model invertebrate, the honey bee (Apis mellifera). Pollen, which supplies essential nutrients to developing workers, can become limited in colonies because of seasonal dearths, loss of foraging habitat, or intensive management. However, the functional consequences of being reared by pollen-stressed nestmates remain unclear, despite growing concern that poor nutrition interacts with other stressors to exacerbate colony decline. We manipulated nurse bees' access to pollen and then assessed differences in weight, longevity, foraging activity, and waggle-dance behavior of the workers that they reared (who were co-fostered as adults). Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers. Workers reared in pollen-stressed colonies were lighter and shorter lived than nestmates reared with adequate access to pollen. Proportionally fewer stressed workers were observed foraging and those who did forage started foraging sooner, foraged for fewer days, and were more likely to die after only a single day of foraging. Pollen-stressed workers were also less likely to waggle dance than their unstressed counterparts and, if they danced, the information they conveyed about the location of food was less precise. These performance deficits may escalate if long-term pollen limitation prevents stressed foragers from providing sufficiently for developing workers. Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction. Honey bees often experience the level of stress that we created, thus our findings underscore the importance of adequate nutrition for supporting worker performance and their potential contribution to colony productivity and quality pollination services.

No MeSH data available.


Related in: MedlinePlus

Workers reared in colonies with limited pollen performed waggle dances with greater directional imprecision as adults.Variability in the A) direction and B) distance components of waggle dances were estimated for workers who were either reared in colonies with limited pollen (and confined to prevent further foraging) or reared in colonies with abundant pollen (either confined or allowed to continue foraging; controls). All dances were performed for a sucrose-solution feeder that was maintained at a fixed location from the observation hive in trial 3. Feeder dances were performed by workers who had treatment-specific marks (paint marks and tags), but individuals were not always uniquely identifiable, so each dance was treated as an independent record. Standard deviations (SD) of the angle and the duration of the waggle runs for each dance were calculated to compare directional precision among treatments. Differences between treatments are indicated by letters where significant treatment effects were found.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4390236&req=5

pone.0121731.g004: Workers reared in colonies with limited pollen performed waggle dances with greater directional imprecision as adults.Variability in the A) direction and B) distance components of waggle dances were estimated for workers who were either reared in colonies with limited pollen (and confined to prevent further foraging) or reared in colonies with abundant pollen (either confined or allowed to continue foraging; controls). All dances were performed for a sucrose-solution feeder that was maintained at a fixed location from the observation hive in trial 3. Feeder dances were performed by workers who had treatment-specific marks (paint marks and tags), but individuals were not always uniquely identifiable, so each dance was treated as an independent record. Standard deviations (SD) of the angle and the duration of the waggle runs for each dance were calculated to compare directional precision among treatments. Differences between treatments are indicated by letters where significant treatment effects were found.

Mentions: Once engaged in dancing, the level of pollen stress that workers experienced during development did not affect the amount of dancing that they did, but it did affect the precision of their dances. As tagged workers foraged at unknown food sources, the mean total number of days that each focal dancer danced, the total number of dances observed per dancer over those days, the total waggle runs performed, mean number of waggle runs per dance, and mean waggle-run duration (a proxy for distance to advertised food sources) did not differ across treatments (Fig. 3; F2,113 = 0.3, P = 0.72; F2,113 = 0.1, P = 0.88; F2,113 = 0.6, P = 0.58; F2,113 = 1.1, P = 0.33; F2,39 = 1.2, P = 0.32; respectively). Similarly, paint-marked and tagged workers from all treatments performed similar numbers of waggle runs upon return from the sucrose-solution feeder (Fig. 4; based on the number of painted and tagged workers: 27 dances performed by at least 6 different workers reared in pollen-limited colonies, 63 dances by at least 18 different workers from confined control colonies, and 35 dances by at least 9 different workers from unconfined control colonies; F2,122 = 2.2, P = 0.11). However, feeder dances performed by pollen-limited workers conveyed more variable information about the direction of the feeder (i.e., angles of waggle runs in each dance) than dances performed by control workers (Fig. 4; F2,122 = 5.7, P = 0.002). Variability in the distance component of the dances (i.e., durations of waggle runs in each dance) was similar among treatments (Fig. 4; F2,122 = 0.4, P = 0.88).


Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults.

Scofield HN, Mattila HR - PLoS ONE (2015)

Workers reared in colonies with limited pollen performed waggle dances with greater directional imprecision as adults.Variability in the A) direction and B) distance components of waggle dances were estimated for workers who were either reared in colonies with limited pollen (and confined to prevent further foraging) or reared in colonies with abundant pollen (either confined or allowed to continue foraging; controls). All dances were performed for a sucrose-solution feeder that was maintained at a fixed location from the observation hive in trial 3. Feeder dances were performed by workers who had treatment-specific marks (paint marks and tags), but individuals were not always uniquely identifiable, so each dance was treated as an independent record. Standard deviations (SD) of the angle and the duration of the waggle runs for each dance were calculated to compare directional precision among treatments. Differences between treatments are indicated by letters where significant treatment effects were found.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4390236&req=5

pone.0121731.g004: Workers reared in colonies with limited pollen performed waggle dances with greater directional imprecision as adults.Variability in the A) direction and B) distance components of waggle dances were estimated for workers who were either reared in colonies with limited pollen (and confined to prevent further foraging) or reared in colonies with abundant pollen (either confined or allowed to continue foraging; controls). All dances were performed for a sucrose-solution feeder that was maintained at a fixed location from the observation hive in trial 3. Feeder dances were performed by workers who had treatment-specific marks (paint marks and tags), but individuals were not always uniquely identifiable, so each dance was treated as an independent record. Standard deviations (SD) of the angle and the duration of the waggle runs for each dance were calculated to compare directional precision among treatments. Differences between treatments are indicated by letters where significant treatment effects were found.
Mentions: Once engaged in dancing, the level of pollen stress that workers experienced during development did not affect the amount of dancing that they did, but it did affect the precision of their dances. As tagged workers foraged at unknown food sources, the mean total number of days that each focal dancer danced, the total number of dances observed per dancer over those days, the total waggle runs performed, mean number of waggle runs per dance, and mean waggle-run duration (a proxy for distance to advertised food sources) did not differ across treatments (Fig. 3; F2,113 = 0.3, P = 0.72; F2,113 = 0.1, P = 0.88; F2,113 = 0.6, P = 0.58; F2,113 = 1.1, P = 0.33; F2,39 = 1.2, P = 0.32; respectively). Similarly, paint-marked and tagged workers from all treatments performed similar numbers of waggle runs upon return from the sucrose-solution feeder (Fig. 4; based on the number of painted and tagged workers: 27 dances performed by at least 6 different workers reared in pollen-limited colonies, 63 dances by at least 18 different workers from confined control colonies, and 35 dances by at least 9 different workers from unconfined control colonies; F2,122 = 2.2, P = 0.11). However, feeder dances performed by pollen-limited workers conveyed more variable information about the direction of the feeder (i.e., angles of waggle runs in each dance) than dances performed by control workers (Fig. 4; F2,122 = 5.7, P = 0.002). Variability in the distance component of the dances (i.e., durations of waggle runs in each dance) was similar among treatments (Fig. 4; F2,122 = 0.4, P = 0.88).

Bottom Line: The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates.Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers.Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction.

View Article: PubMed Central - PubMed

Affiliation: Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America.

ABSTRACT
The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates. We examined the effects of larval nutritional stress on the foraging and recruitment behavior of an economically important model invertebrate, the honey bee (Apis mellifera). Pollen, which supplies essential nutrients to developing workers, can become limited in colonies because of seasonal dearths, loss of foraging habitat, or intensive management. However, the functional consequences of being reared by pollen-stressed nestmates remain unclear, despite growing concern that poor nutrition interacts with other stressors to exacerbate colony decline. We manipulated nurse bees' access to pollen and then assessed differences in weight, longevity, foraging activity, and waggle-dance behavior of the workers that they reared (who were co-fostered as adults). Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers. Workers reared in pollen-stressed colonies were lighter and shorter lived than nestmates reared with adequate access to pollen. Proportionally fewer stressed workers were observed foraging and those who did forage started foraging sooner, foraged for fewer days, and were more likely to die after only a single day of foraging. Pollen-stressed workers were also less likely to waggle dance than their unstressed counterparts and, if they danced, the information they conveyed about the location of food was less precise. These performance deficits may escalate if long-term pollen limitation prevents stressed foragers from providing sufficiently for developing workers. Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction. Honey bees often experience the level of stress that we created, thus our findings underscore the importance of adequate nutrition for supporting worker performance and their potential contribution to colony productivity and quality pollination services.

No MeSH data available.


Related in: MedlinePlus