Limits...
Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults.

Scofield HN, Mattila HR - PLoS ONE (2015)

Bottom Line: The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates.Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers.Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction.

View Article: PubMed Central - PubMed

Affiliation: Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America.

ABSTRACT
The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates. We examined the effects of larval nutritional stress on the foraging and recruitment behavior of an economically important model invertebrate, the honey bee (Apis mellifera). Pollen, which supplies essential nutrients to developing workers, can become limited in colonies because of seasonal dearths, loss of foraging habitat, or intensive management. However, the functional consequences of being reared by pollen-stressed nestmates remain unclear, despite growing concern that poor nutrition interacts with other stressors to exacerbate colony decline. We manipulated nurse bees' access to pollen and then assessed differences in weight, longevity, foraging activity, and waggle-dance behavior of the workers that they reared (who were co-fostered as adults). Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers. Workers reared in pollen-stressed colonies were lighter and shorter lived than nestmates reared with adequate access to pollen. Proportionally fewer stressed workers were observed foraging and those who did forage started foraging sooner, foraged for fewer days, and were more likely to die after only a single day of foraging. Pollen-stressed workers were also less likely to waggle dance than their unstressed counterparts and, if they danced, the information they conveyed about the location of food was less precise. These performance deficits may escalate if long-term pollen limitation prevents stressed foragers from providing sufficiently for developing workers. Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction. Honey bees often experience the level of stress that we created, thus our findings underscore the importance of adequate nutrition for supporting worker performance and their potential contribution to colony productivity and quality pollination services.

No MeSH data available.


Related in: MedlinePlus

Survivorship of adult workers was lowest when access to pollen was limited during larval development.Workers were either reared in colonies with limited pollen (and confined to prevent further foraging) or reared in colonies with abundant pollen (either confined or allowed to continue to forage; controls). In each trial, focal workers were introduced into an observation hive after adult emergence; only those workers present 24 hours later were included in the survivorship analysis. The gray area in trial 3 indicates the period over which waggle-dance recruitment was monitored. Raw data are depicted, pooled across colonies within a treatment per trial, rather than Kaplan-Meier estimates of survival function (see Methods). Significant differences in survival among treatments within a trial are indicated by different letters.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4390236&req=5

pone.0121731.g002: Survivorship of adult workers was lowest when access to pollen was limited during larval development.Workers were either reared in colonies with limited pollen (and confined to prevent further foraging) or reared in colonies with abundant pollen (either confined or allowed to continue to forage; controls). In each trial, focal workers were introduced into an observation hive after adult emergence; only those workers present 24 hours later were included in the survivorship analysis. The gray area in trial 3 indicates the period over which waggle-dance recruitment was monitored. Raw data are depicted, pooled across colonies within a treatment per trial, rather than Kaplan-Meier estimates of survival function (see Methods). Significant differences in survival among treatments within a trial are indicated by different letters.

Mentions: There was no difference in mean worker longevity between control treatments in trial 2 (Fig. 1B). In trial 3, mean worker longevity was 3 days shorter for focal workers reared in confined control colonies compared to workers reared in unconfined controls (Fig. 1B). However, this difference was small compared to the reduction in longevity experienced by workers reared in pollen-limited colonies in the same trial—they lived 18 fewer days on average compared to workers from unconfined controls and 15 fewer days than workers from confined controls (Fig. 1B). The survivorship of workers reared in pollen-limited colonies was significantly lower than that of workers from both control treatments in each trial (Fig. 2; log-rank tests of survival function with Šidák adjustments; P < 0.0001 for each trial).


Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults.

Scofield HN, Mattila HR - PLoS ONE (2015)

Survivorship of adult workers was lowest when access to pollen was limited during larval development.Workers were either reared in colonies with limited pollen (and confined to prevent further foraging) or reared in colonies with abundant pollen (either confined or allowed to continue to forage; controls). In each trial, focal workers were introduced into an observation hive after adult emergence; only those workers present 24 hours later were included in the survivorship analysis. The gray area in trial 3 indicates the period over which waggle-dance recruitment was monitored. Raw data are depicted, pooled across colonies within a treatment per trial, rather than Kaplan-Meier estimates of survival function (see Methods). Significant differences in survival among treatments within a trial are indicated by different letters.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4390236&req=5

pone.0121731.g002: Survivorship of adult workers was lowest when access to pollen was limited during larval development.Workers were either reared in colonies with limited pollen (and confined to prevent further foraging) or reared in colonies with abundant pollen (either confined or allowed to continue to forage; controls). In each trial, focal workers were introduced into an observation hive after adult emergence; only those workers present 24 hours later were included in the survivorship analysis. The gray area in trial 3 indicates the period over which waggle-dance recruitment was monitored. Raw data are depicted, pooled across colonies within a treatment per trial, rather than Kaplan-Meier estimates of survival function (see Methods). Significant differences in survival among treatments within a trial are indicated by different letters.
Mentions: There was no difference in mean worker longevity between control treatments in trial 2 (Fig. 1B). In trial 3, mean worker longevity was 3 days shorter for focal workers reared in confined control colonies compared to workers reared in unconfined controls (Fig. 1B). However, this difference was small compared to the reduction in longevity experienced by workers reared in pollen-limited colonies in the same trial—they lived 18 fewer days on average compared to workers from unconfined controls and 15 fewer days than workers from confined controls (Fig. 1B). The survivorship of workers reared in pollen-limited colonies was significantly lower than that of workers from both control treatments in each trial (Fig. 2; log-rank tests of survival function with Šidák adjustments; P < 0.0001 for each trial).

Bottom Line: The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates.Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers.Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction.

View Article: PubMed Central - PubMed

Affiliation: Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America.

ABSTRACT
The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates. We examined the effects of larval nutritional stress on the foraging and recruitment behavior of an economically important model invertebrate, the honey bee (Apis mellifera). Pollen, which supplies essential nutrients to developing workers, can become limited in colonies because of seasonal dearths, loss of foraging habitat, or intensive management. However, the functional consequences of being reared by pollen-stressed nestmates remain unclear, despite growing concern that poor nutrition interacts with other stressors to exacerbate colony decline. We manipulated nurse bees' access to pollen and then assessed differences in weight, longevity, foraging activity, and waggle-dance behavior of the workers that they reared (who were co-fostered as adults). Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers. Workers reared in pollen-stressed colonies were lighter and shorter lived than nestmates reared with adequate access to pollen. Proportionally fewer stressed workers were observed foraging and those who did forage started foraging sooner, foraged for fewer days, and were more likely to die after only a single day of foraging. Pollen-stressed workers were also less likely to waggle dance than their unstressed counterparts and, if they danced, the information they conveyed about the location of food was less precise. These performance deficits may escalate if long-term pollen limitation prevents stressed foragers from providing sufficiently for developing workers. Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction. Honey bees often experience the level of stress that we created, thus our findings underscore the importance of adequate nutrition for supporting worker performance and their potential contribution to colony productivity and quality pollination services.

No MeSH data available.


Related in: MedlinePlus