Limits...
Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults.

Scofield HN, Mattila HR - PLoS ONE (2015)

Bottom Line: The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates.Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers.Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction.

View Article: PubMed Central - PubMed

Affiliation: Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America.

ABSTRACT
The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates. We examined the effects of larval nutritional stress on the foraging and recruitment behavior of an economically important model invertebrate, the honey bee (Apis mellifera). Pollen, which supplies essential nutrients to developing workers, can become limited in colonies because of seasonal dearths, loss of foraging habitat, or intensive management. However, the functional consequences of being reared by pollen-stressed nestmates remain unclear, despite growing concern that poor nutrition interacts with other stressors to exacerbate colony decline. We manipulated nurse bees' access to pollen and then assessed differences in weight, longevity, foraging activity, and waggle-dance behavior of the workers that they reared (who were co-fostered as adults). Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers. Workers reared in pollen-stressed colonies were lighter and shorter lived than nestmates reared with adequate access to pollen. Proportionally fewer stressed workers were observed foraging and those who did forage started foraging sooner, foraged for fewer days, and were more likely to die after only a single day of foraging. Pollen-stressed workers were also less likely to waggle dance than their unstressed counterparts and, if they danced, the information they conveyed about the location of food was less precise. These performance deficits may escalate if long-term pollen limitation prevents stressed foragers from providing sufficiently for developing workers. Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction. Honey bees often experience the level of stress that we created, thus our findings underscore the importance of adequate nutrition for supporting worker performance and their potential contribution to colony productivity and quality pollination services.

No MeSH data available.


Related in: MedlinePlus

Weight, longevity, and foraging activity of adult workers were reduced when access to pollen was limited during larval development.Mean (± SEM) A) fresh weight of focal workers at adult emergence, B) longevity of focal workers, C) age at onset of foraging for focal workers who foraged, and D) number of days observed foraging for focal workers who foraged. Focal workers originated from source colonies that were split into colony subunits that had either limited or abundant supplies of pollen when focal workers were reared as larvae. Subunits were either confined to a cool incubator to prevent further pollen foraging (pollen-limited or confined controls) or allowed to forage freely (unconfined controls). When development was complete, focal workers were co-fostered as adults in an unrelated host colony. The experiment was replicated in three separate trials that used different source and host colonies. Means comparisons were made within trials wherever treatment effects were significant after a Bonferroni correction; significant differences between treatments are indicated by letters.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4390236&req=5

pone.0121731.g001: Weight, longevity, and foraging activity of adult workers were reduced when access to pollen was limited during larval development.Mean (± SEM) A) fresh weight of focal workers at adult emergence, B) longevity of focal workers, C) age at onset of foraging for focal workers who foraged, and D) number of days observed foraging for focal workers who foraged. Focal workers originated from source colonies that were split into colony subunits that had either limited or abundant supplies of pollen when focal workers were reared as larvae. Subunits were either confined to a cool incubator to prevent further pollen foraging (pollen-limited or confined controls) or allowed to forage freely (unconfined controls). When development was complete, focal workers were co-fostered as adults in an unrelated host colony. The experiment was replicated in three separate trials that used different source and host colonies. Means comparisons were made within trials wherever treatment effects were significant after a Bonferroni correction; significant differences between treatments are indicated by letters.

Mentions: Focal workers reared under conditions of pollen limitation had reduced weight compared to workers that were reared in the confined and unconfined controls (Fig. 1A; trial 1: t914 = 52.6, P < 0.0001; trial 2: F2,143 = 56.2, P < 0.0001; trial 3: F2,737 = 1336.5, P < 0.0001). Across trials, workers that experienced pollen limitation as larvae were 8–37% lighter at adult emergence than workers that were reared by nestmates with access to abundant pollen (controls). Significant differences between control treatments in mean emergence weight indicated an effect of being reared by workers who were confined to the hive, even with plentiful supplies of pollen (Fig. 1A).


Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults.

Scofield HN, Mattila HR - PLoS ONE (2015)

Weight, longevity, and foraging activity of adult workers were reduced when access to pollen was limited during larval development.Mean (± SEM) A) fresh weight of focal workers at adult emergence, B) longevity of focal workers, C) age at onset of foraging for focal workers who foraged, and D) number of days observed foraging for focal workers who foraged. Focal workers originated from source colonies that were split into colony subunits that had either limited or abundant supplies of pollen when focal workers were reared as larvae. Subunits were either confined to a cool incubator to prevent further pollen foraging (pollen-limited or confined controls) or allowed to forage freely (unconfined controls). When development was complete, focal workers were co-fostered as adults in an unrelated host colony. The experiment was replicated in three separate trials that used different source and host colonies. Means comparisons were made within trials wherever treatment effects were significant after a Bonferroni correction; significant differences between treatments are indicated by letters.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4390236&req=5

pone.0121731.g001: Weight, longevity, and foraging activity of adult workers were reduced when access to pollen was limited during larval development.Mean (± SEM) A) fresh weight of focal workers at adult emergence, B) longevity of focal workers, C) age at onset of foraging for focal workers who foraged, and D) number of days observed foraging for focal workers who foraged. Focal workers originated from source colonies that were split into colony subunits that had either limited or abundant supplies of pollen when focal workers were reared as larvae. Subunits were either confined to a cool incubator to prevent further pollen foraging (pollen-limited or confined controls) or allowed to forage freely (unconfined controls). When development was complete, focal workers were co-fostered as adults in an unrelated host colony. The experiment was replicated in three separate trials that used different source and host colonies. Means comparisons were made within trials wherever treatment effects were significant after a Bonferroni correction; significant differences between treatments are indicated by letters.
Mentions: Focal workers reared under conditions of pollen limitation had reduced weight compared to workers that were reared in the confined and unconfined controls (Fig. 1A; trial 1: t914 = 52.6, P < 0.0001; trial 2: F2,143 = 56.2, P < 0.0001; trial 3: F2,737 = 1336.5, P < 0.0001). Across trials, workers that experienced pollen limitation as larvae were 8–37% lighter at adult emergence than workers that were reared by nestmates with access to abundant pollen (controls). Significant differences between control treatments in mean emergence weight indicated an effect of being reared by workers who were confined to the hive, even with plentiful supplies of pollen (Fig. 1A).

Bottom Line: The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates.Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers.Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction.

View Article: PubMed Central - PubMed

Affiliation: Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America.

ABSTRACT
The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates. We examined the effects of larval nutritional stress on the foraging and recruitment behavior of an economically important model invertebrate, the honey bee (Apis mellifera). Pollen, which supplies essential nutrients to developing workers, can become limited in colonies because of seasonal dearths, loss of foraging habitat, or intensive management. However, the functional consequences of being reared by pollen-stressed nestmates remain unclear, despite growing concern that poor nutrition interacts with other stressors to exacerbate colony decline. We manipulated nurse bees' access to pollen and then assessed differences in weight, longevity, foraging activity, and waggle-dance behavior of the workers that they reared (who were co-fostered as adults). Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers. Workers reared in pollen-stressed colonies were lighter and shorter lived than nestmates reared with adequate access to pollen. Proportionally fewer stressed workers were observed foraging and those who did forage started foraging sooner, foraged for fewer days, and were more likely to die after only a single day of foraging. Pollen-stressed workers were also less likely to waggle dance than their unstressed counterparts and, if they danced, the information they conveyed about the location of food was less precise. These performance deficits may escalate if long-term pollen limitation prevents stressed foragers from providing sufficiently for developing workers. Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction. Honey bees often experience the level of stress that we created, thus our findings underscore the importance of adequate nutrition for supporting worker performance and their potential contribution to colony productivity and quality pollination services.

No MeSH data available.


Related in: MedlinePlus