Limits...
Immunophenotyping of Waldenströms macroglobulinemia cell lines reveals distinct patterns of surface antigen expression: potential biological and therapeutic implications.

Paulus A, Chitta KS, Wallace PK, Advani PP, Akhtar S, Kuranz-Blake M, Ailawadhi S, Chanan-Khan AA - PLoS ONE (2015)

Bottom Line: RPCI-WM1 cells demonstrated decreased expression of CD19, CD20, and CD23 with enhanced expression of CD28, CD38 and CD184, antigens that were differentially expressed on BCWM.1 and MWCL-1 cells.Due to increased expression of CD184/CXCR4 and CD38, RPCI-WM1 represents a valuable model in which to study the effects anti-CXCR4 or anti-CD38 targeted therapies that are actively being developed for treatment of hematologic cancers.Our analysis defines the utility of the most commonly employed WM cell lines as based on their immunophenotype profiles, highlighting unique differences that can be further studied for therapeutic exploit.

View Article: PubMed Central - PubMed

Affiliation: Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America.

ABSTRACT
Waldenströms macroglobulinemia (WM) is a subtype of Non-Hodgkin's lymphoma in which the tumor cell population is markedly heterogeneous, consisting of immunoglobulin-M secreting B-lymphocytes, plasmacytoid lymphocytes and plasma cells. Due to rarity of disease and scarcity of reliable preclinical models, many facets of WM molecular and phenotypic architecture remain incompletely understood. Currently, there are 3 human WM cell lines that are routinely used in experimental studies, namely, BCWM.1, MWCL-1 and RPCI-WM1. During establishment of RPCI-WM1, we observed loss of the CD19 and CD20 antigens, which are typically present on WM cells. Intrigued by this observation and in an effort to better define the immunophenotypic makeup of this cell line, we conducted a more comprehensive analysis for the presence or absence of other cell surface antigens that are present on the RPCI-WM1 model, as well as those on the two other WM cell lines, BCWM.1 and MWCL-1. We examined expression of 65 extracellular and 4 intracellular antigens, comprising B-cell, plasma cell, T-cell, NK-cell, myeloid and hematopoietic stem cell surface markers by flow cytometry analysis. RPCI-WM1 cells demonstrated decreased expression of CD19, CD20, and CD23 with enhanced expression of CD28, CD38 and CD184, antigens that were differentially expressed on BCWM.1 and MWCL-1 cells. Due to increased expression of CD184/CXCR4 and CD38, RPCI-WM1 represents a valuable model in which to study the effects anti-CXCR4 or anti-CD38 targeted therapies that are actively being developed for treatment of hematologic cancers. Overall, differences in surface antigen expression across the 3 cell lines may reflect the tumor clone population predominant in the index patients, from whom the cell lines were developed. Our analysis defines the utility of the most commonly employed WM cell lines as based on their immunophenotype profiles, highlighting unique differences that can be further studied for therapeutic exploit.

No MeSH data available.


Related in: MedlinePlus

Comparative immunophenotyping analysis of RPCI-WM1, BCWM.1 and MWCL-1 WM cell lines.A total of 65 extracellular and 4 intracellular antigens, comprising B-cell, plasma cell, T-cell, NK-cell, myeloid and hematopoietic stem cell surface markers were analyzed by flow cytometry analysis. Quantification of % gated antigen expression and density of antigen expression is detailed in Table 4. Blue line indicates RPCI-WM1 antigen expression, red line indicates MWCL-1 antigen expression and green line indicates antigen expression in BCWM.1 cell line.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4390194&req=5

pone.0122338.g003: Comparative immunophenotyping analysis of RPCI-WM1, BCWM.1 and MWCL-1 WM cell lines.A total of 65 extracellular and 4 intracellular antigens, comprising B-cell, plasma cell, T-cell, NK-cell, myeloid and hematopoietic stem cell surface markers were analyzed by flow cytometry analysis. Quantification of % gated antigen expression and density of antigen expression is detailed in Table 4. Blue line indicates RPCI-WM1 antigen expression, red line indicates MWCL-1 antigen expression and green line indicates antigen expression in BCWM.1 cell line.

Mentions: Overall antigen expression that was similarly present on at least 20% of malignant cells across all 3 WM models was analyzed. A total of 20 surface molecules were expressed on >20% of RPCI-WM1, BCWM.1 and MWCL-1 tumor cells (Table 3). Notably, CD39, 43, and 70 were found on more than 98% of cells across all 3 cell lines, exhibiting a medium density pattern of expression. CD45 was prominent on 84–98% of tumor cells from all cell lines with the highest density signal in RPCI-WM1 cells (MESF 24,447), nearly twice as high compared to BCWM.1 cells. In contrast, the long ~220kD isoform CD45RA was highest in BCWM.1 (89.7% of cells, MESF 5,577) and lowest on RPCI-WM1. CD134+low signal intensity was found on ~67%, 80% and 92% of MWCL-1, RPCI-WM1 and BCWM.1 cells, respectively. Markers that were found only on 20–40% of cells in a low density pattern included CD25, 66b and 279. Of the remaining antigens, CD86, although apparent on the surface of >85% of cells from all three tumor models, was most reactive (as based upon MESF) on RPCI-WM1 followed by BCWM.1 and least on MWCL-1 cells. The plasma cell surface marker CD138 was however most widely observed on MWCL-1 (98% of cells) and RPCI-WM1 (88% of cells), yet was found on only 35% of BCWM.1 cells. Expression of CD268/BAFFR (B-cell activating factor receptor) and CD272/BTLA (B and T lymphocyte attenuator) was also more apparent on MWCL-1 cells as well as BCWM.1, but negligible on RPCI-WM1. Lastly, expression of CD22, which functions as an inhibitory receptor for B-cell receptor signaling[23] was low on ~98% of BCWM.1 tumor cells (MESF 15,665.8), lesser so on 63% of MWCL-1 cells (MESF 2,819.4) and scarcely present on 20% of RPCI-WM1 cells (MESF 958.8). Additional data as well as a comprehensive immunophenotypic comparison across all 3 models is presented in Fig 3 and Table 4.


Immunophenotyping of Waldenströms macroglobulinemia cell lines reveals distinct patterns of surface antigen expression: potential biological and therapeutic implications.

Paulus A, Chitta KS, Wallace PK, Advani PP, Akhtar S, Kuranz-Blake M, Ailawadhi S, Chanan-Khan AA - PLoS ONE (2015)

Comparative immunophenotyping analysis of RPCI-WM1, BCWM.1 and MWCL-1 WM cell lines.A total of 65 extracellular and 4 intracellular antigens, comprising B-cell, plasma cell, T-cell, NK-cell, myeloid and hematopoietic stem cell surface markers were analyzed by flow cytometry analysis. Quantification of % gated antigen expression and density of antigen expression is detailed in Table 4. Blue line indicates RPCI-WM1 antigen expression, red line indicates MWCL-1 antigen expression and green line indicates antigen expression in BCWM.1 cell line.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4390194&req=5

pone.0122338.g003: Comparative immunophenotyping analysis of RPCI-WM1, BCWM.1 and MWCL-1 WM cell lines.A total of 65 extracellular and 4 intracellular antigens, comprising B-cell, plasma cell, T-cell, NK-cell, myeloid and hematopoietic stem cell surface markers were analyzed by flow cytometry analysis. Quantification of % gated antigen expression and density of antigen expression is detailed in Table 4. Blue line indicates RPCI-WM1 antigen expression, red line indicates MWCL-1 antigen expression and green line indicates antigen expression in BCWM.1 cell line.
Mentions: Overall antigen expression that was similarly present on at least 20% of malignant cells across all 3 WM models was analyzed. A total of 20 surface molecules were expressed on >20% of RPCI-WM1, BCWM.1 and MWCL-1 tumor cells (Table 3). Notably, CD39, 43, and 70 were found on more than 98% of cells across all 3 cell lines, exhibiting a medium density pattern of expression. CD45 was prominent on 84–98% of tumor cells from all cell lines with the highest density signal in RPCI-WM1 cells (MESF 24,447), nearly twice as high compared to BCWM.1 cells. In contrast, the long ~220kD isoform CD45RA was highest in BCWM.1 (89.7% of cells, MESF 5,577) and lowest on RPCI-WM1. CD134+low signal intensity was found on ~67%, 80% and 92% of MWCL-1, RPCI-WM1 and BCWM.1 cells, respectively. Markers that were found only on 20–40% of cells in a low density pattern included CD25, 66b and 279. Of the remaining antigens, CD86, although apparent on the surface of >85% of cells from all three tumor models, was most reactive (as based upon MESF) on RPCI-WM1 followed by BCWM.1 and least on MWCL-1 cells. The plasma cell surface marker CD138 was however most widely observed on MWCL-1 (98% of cells) and RPCI-WM1 (88% of cells), yet was found on only 35% of BCWM.1 cells. Expression of CD268/BAFFR (B-cell activating factor receptor) and CD272/BTLA (B and T lymphocyte attenuator) was also more apparent on MWCL-1 cells as well as BCWM.1, but negligible on RPCI-WM1. Lastly, expression of CD22, which functions as an inhibitory receptor for B-cell receptor signaling[23] was low on ~98% of BCWM.1 tumor cells (MESF 15,665.8), lesser so on 63% of MWCL-1 cells (MESF 2,819.4) and scarcely present on 20% of RPCI-WM1 cells (MESF 958.8). Additional data as well as a comprehensive immunophenotypic comparison across all 3 models is presented in Fig 3 and Table 4.

Bottom Line: RPCI-WM1 cells demonstrated decreased expression of CD19, CD20, and CD23 with enhanced expression of CD28, CD38 and CD184, antigens that were differentially expressed on BCWM.1 and MWCL-1 cells.Due to increased expression of CD184/CXCR4 and CD38, RPCI-WM1 represents a valuable model in which to study the effects anti-CXCR4 or anti-CD38 targeted therapies that are actively being developed for treatment of hematologic cancers.Our analysis defines the utility of the most commonly employed WM cell lines as based on their immunophenotype profiles, highlighting unique differences that can be further studied for therapeutic exploit.

View Article: PubMed Central - PubMed

Affiliation: Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America.

ABSTRACT
Waldenströms macroglobulinemia (WM) is a subtype of Non-Hodgkin's lymphoma in which the tumor cell population is markedly heterogeneous, consisting of immunoglobulin-M secreting B-lymphocytes, plasmacytoid lymphocytes and plasma cells. Due to rarity of disease and scarcity of reliable preclinical models, many facets of WM molecular and phenotypic architecture remain incompletely understood. Currently, there are 3 human WM cell lines that are routinely used in experimental studies, namely, BCWM.1, MWCL-1 and RPCI-WM1. During establishment of RPCI-WM1, we observed loss of the CD19 and CD20 antigens, which are typically present on WM cells. Intrigued by this observation and in an effort to better define the immunophenotypic makeup of this cell line, we conducted a more comprehensive analysis for the presence or absence of other cell surface antigens that are present on the RPCI-WM1 model, as well as those on the two other WM cell lines, BCWM.1 and MWCL-1. We examined expression of 65 extracellular and 4 intracellular antigens, comprising B-cell, plasma cell, T-cell, NK-cell, myeloid and hematopoietic stem cell surface markers by flow cytometry analysis. RPCI-WM1 cells demonstrated decreased expression of CD19, CD20, and CD23 with enhanced expression of CD28, CD38 and CD184, antigens that were differentially expressed on BCWM.1 and MWCL-1 cells. Due to increased expression of CD184/CXCR4 and CD38, RPCI-WM1 represents a valuable model in which to study the effects anti-CXCR4 or anti-CD38 targeted therapies that are actively being developed for treatment of hematologic cancers. Overall, differences in surface antigen expression across the 3 cell lines may reflect the tumor clone population predominant in the index patients, from whom the cell lines were developed. Our analysis defines the utility of the most commonly employed WM cell lines as based on their immunophenotype profiles, highlighting unique differences that can be further studied for therapeutic exploit.

No MeSH data available.


Related in: MedlinePlus