Limits...
Enhanced vascularization in hybrid PCL/gelatin fibrous scaffolds with sustained release of VEGF.

Wang K, Chen X, Pan Y, Cui Y, Zhou X, Kong D, Zhao Q - Biomed Res Int (2015)

Bottom Line: In vitro release test confirms the sustained releasing profile of VEGF, and stable release was observed over a time period of 25 days.In vitro cell assay indicates that VEGF release significantly promoted the proliferation of endothelial cells.More importantly, in vivo subcutaneous implantation reflects that vascularization has been effectively enhanced in the PCL/gelatin scaffolds compared with the PCL counterpart due to the sustained release of VEGF.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.

ABSTRACT
Creating a long-lasting and functional vasculature represents one of the most fundamental challenges in tissue engineering. VEGF has been widely accepted as a potent angiogenic factor involved in the early stages of blood vessel formation. In this study, fibrous scaffolds that consist of PCL and gelatin fibers were fabricated. The gelatin fibers were further functionalized by heparin immobilization, which provides binding sites for VEGF and thus enables the sustained release of VEGF. In vitro release test confirms the sustained releasing profile of VEGF, and stable release was observed over a time period of 25 days. In vitro cell assay indicates that VEGF release significantly promoted the proliferation of endothelial cells. More importantly, in vivo subcutaneous implantation reflects that vascularization has been effectively enhanced in the PCL/gelatin scaffolds compared with the PCL counterpart due to the sustained release of VEGF. Therefore, the heparinized PCL/gelatin scaffolds developed in this study may be a promising candidate for regeneration of complex tissues with sufficient vascularization.

Show MeSH

Related in: MedlinePlus

In vitro release of VEGF from heparinized PCL/Gel scaffolds and PCL (n = 3).
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4390103&req=5

fig4: In vitro release of VEGF from heparinized PCL/Gel scaffolds and PCL (n = 3).

Mentions: Figure 4 shows in vitro releasing profile of VEGF from heparinized PCL/Gel scaffolds with neat PCL as control. Sustained release of VEGF was observed in the Hep-PCL/Gel scaffolds within time period of 25 days. The release rate is quite stable, and the cumulative amounts of VEGF approach 2.48 ± 0.11 ng/mg for Hep-PCL/Gel-1 and 2.7 ± 0.31 ng/mg for Hep-PCL/Gel-2, respectively. In contrast, PCL shows burst release during the initial 5 days due to the passive physical adsorption of VEGF on the scaffold, and nearly no additional release occurred within the following time period.


Enhanced vascularization in hybrid PCL/gelatin fibrous scaffolds with sustained release of VEGF.

Wang K, Chen X, Pan Y, Cui Y, Zhou X, Kong D, Zhao Q - Biomed Res Int (2015)

In vitro release of VEGF from heparinized PCL/Gel scaffolds and PCL (n = 3).
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4390103&req=5

fig4: In vitro release of VEGF from heparinized PCL/Gel scaffolds and PCL (n = 3).
Mentions: Figure 4 shows in vitro releasing profile of VEGF from heparinized PCL/Gel scaffolds with neat PCL as control. Sustained release of VEGF was observed in the Hep-PCL/Gel scaffolds within time period of 25 days. The release rate is quite stable, and the cumulative amounts of VEGF approach 2.48 ± 0.11 ng/mg for Hep-PCL/Gel-1 and 2.7 ± 0.31 ng/mg for Hep-PCL/Gel-2, respectively. In contrast, PCL shows burst release during the initial 5 days due to the passive physical adsorption of VEGF on the scaffold, and nearly no additional release occurred within the following time period.

Bottom Line: In vitro release test confirms the sustained releasing profile of VEGF, and stable release was observed over a time period of 25 days.In vitro cell assay indicates that VEGF release significantly promoted the proliferation of endothelial cells.More importantly, in vivo subcutaneous implantation reflects that vascularization has been effectively enhanced in the PCL/gelatin scaffolds compared with the PCL counterpart due to the sustained release of VEGF.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.

ABSTRACT
Creating a long-lasting and functional vasculature represents one of the most fundamental challenges in tissue engineering. VEGF has been widely accepted as a potent angiogenic factor involved in the early stages of blood vessel formation. In this study, fibrous scaffolds that consist of PCL and gelatin fibers were fabricated. The gelatin fibers were further functionalized by heparin immobilization, which provides binding sites for VEGF and thus enables the sustained release of VEGF. In vitro release test confirms the sustained releasing profile of VEGF, and stable release was observed over a time period of 25 days. In vitro cell assay indicates that VEGF release significantly promoted the proliferation of endothelial cells. More importantly, in vivo subcutaneous implantation reflects that vascularization has been effectively enhanced in the PCL/gelatin scaffolds compared with the PCL counterpart due to the sustained release of VEGF. Therefore, the heparinized PCL/gelatin scaffolds developed in this study may be a promising candidate for regeneration of complex tissues with sufficient vascularization.

Show MeSH
Related in: MedlinePlus