Limits...
Weather parameters and nosocomial bloodstream infection: a case-referent study.

Caldeira SM, Cunha AR, Akazawa RT, Moreira RG, Souza Ldo R, Fortaleza CM - Rev Saude Publica (2015)

Bottom Line: In the multivariable models, temperature was positively associated with the recovery of gram-negative bacilli (OR = 1.14; 95%CI 1.10;1.19) or Acinetobacter baumannii (OR = 1.26; 95%CI 1.16;1.37), even after adjustment for demographic and admission data.The results correspond with those from ecological studies, indicating a higher incidence of gram-negative bacilli during warm seasons.These findings should guide policies directed at preventing and controlling healthcare-associated infections.

View Article: PubMed Central - PubMed

ABSTRACT
OBJECTIVE To evaluate if temperature and humidity influenced the etiology of bloodstream infections in a hospital from 2005 to 2010. METHODS The study had a case-referent design. Individual cases of bloodstream infections caused by specific groups or pathogens were compared with several references. In the first analysis, average temperature and humidity values for the seven days preceding collection of blood cultures were compared with an overall "seven-days moving average" for the study period. The second analysis included only patients with bloodstream infections. Several logistic regression models were used to compare different pathogens and groups with respect to the immediate weather parameters, adjusting for demographics, time, and unit of admission. RESULTS Higher temperatures and humidity were related to the recovery of bacteria as a whole (versus fungi) and of gram-negative bacilli. In the multivariable models, temperature was positively associated with the recovery of gram-negative bacilli (OR = 1.14; 95%CI 1.10;1.19) or Acinetobacter baumannii (OR = 1.26; 95%CI 1.16;1.37), even after adjustment for demographic and admission data. An inverse association was identified for humidity. CONCLUSIONS The study documented the impact of temperature and humidity on the incidence and etiology of bloodstream infections. The results correspond with those from ecological studies, indicating a higher incidence of gram-negative bacilli during warm seasons. These findings should guide policies directed at preventing and controlling healthcare-associated infections.

Show MeSH

Related in: MedlinePlus

Boxplot of seven-day average temperature parameters for the overall period and all study groups.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4390072&req=5

f01: Boxplot of seven-day average temperature parameters for the overall period and all study groups.

Mentions: A total of 1,619 HA-BSI were included in the study. Of these, 1,417 had bacterial etiology (55.8% GNB, 44.2% GPC). Among GNB infections, 22.4% were caused by A. baumannii. When all groups were compared to the overall period reference (Table 1, Figures 1 and 2), higher temperature parameters were found for bacteria GNB and A. baumannii, whereas fungi were associated with lower temperatures. Humidity parameters were higher than the reference for bacteria and GPC and lower for fungi and A. baumannii. On the other hand, lower temperatures were identified in the days preceding HA-BSI of fungal etiology.


Weather parameters and nosocomial bloodstream infection: a case-referent study.

Caldeira SM, Cunha AR, Akazawa RT, Moreira RG, Souza Ldo R, Fortaleza CM - Rev Saude Publica (2015)

Boxplot of seven-day average temperature parameters for the overall period and all study groups.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4390072&req=5

f01: Boxplot of seven-day average temperature parameters for the overall period and all study groups.
Mentions: A total of 1,619 HA-BSI were included in the study. Of these, 1,417 had bacterial etiology (55.8% GNB, 44.2% GPC). Among GNB infections, 22.4% were caused by A. baumannii. When all groups were compared to the overall period reference (Table 1, Figures 1 and 2), higher temperature parameters were found for bacteria GNB and A. baumannii, whereas fungi were associated with lower temperatures. Humidity parameters were higher than the reference for bacteria and GPC and lower for fungi and A. baumannii. On the other hand, lower temperatures were identified in the days preceding HA-BSI of fungal etiology.

Bottom Line: In the multivariable models, temperature was positively associated with the recovery of gram-negative bacilli (OR = 1.14; 95%CI 1.10;1.19) or Acinetobacter baumannii (OR = 1.26; 95%CI 1.16;1.37), even after adjustment for demographic and admission data.The results correspond with those from ecological studies, indicating a higher incidence of gram-negative bacilli during warm seasons.These findings should guide policies directed at preventing and controlling healthcare-associated infections.

View Article: PubMed Central - PubMed

ABSTRACT
OBJECTIVE To evaluate if temperature and humidity influenced the etiology of bloodstream infections in a hospital from 2005 to 2010. METHODS The study had a case-referent design. Individual cases of bloodstream infections caused by specific groups or pathogens were compared with several references. In the first analysis, average temperature and humidity values for the seven days preceding collection of blood cultures were compared with an overall "seven-days moving average" for the study period. The second analysis included only patients with bloodstream infections. Several logistic regression models were used to compare different pathogens and groups with respect to the immediate weather parameters, adjusting for demographics, time, and unit of admission. RESULTS Higher temperatures and humidity were related to the recovery of bacteria as a whole (versus fungi) and of gram-negative bacilli. In the multivariable models, temperature was positively associated with the recovery of gram-negative bacilli (OR = 1.14; 95%CI 1.10;1.19) or Acinetobacter baumannii (OR = 1.26; 95%CI 1.16;1.37), even after adjustment for demographic and admission data. An inverse association was identified for humidity. CONCLUSIONS The study documented the impact of temperature and humidity on the incidence and etiology of bloodstream infections. The results correspond with those from ecological studies, indicating a higher incidence of gram-negative bacilli during warm seasons. These findings should guide policies directed at preventing and controlling healthcare-associated infections.

Show MeSH
Related in: MedlinePlus