Limits...
Self-consolidation mechanism of nanostructured Ti5Si3 compact induced by electrical discharge.

Lee WH, Cheon YW, Jo YH, Seong JG, Jo YJ, Kim YH, Noh MS, Jeong HG, Van Tyne CJ, Chang SY - ScientificWorldJournal (2015)

Bottom Line: A solid bulk of nanostructured Ti5Si3 with no compositional deviation was obtained in times as short as 159 μsec by the discharge.Followed rapid cooling preserved the nanostructure of consolidated Ti5Si3 compact.Complete conversion yielding a single phase Ti5Si3 is primarily dominated by the solid-liquid mechanism.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 143-747, Republic of Korea.

ABSTRACT
Electrical discharge using a capacitance of 450 μF at 7.0 and 8.0 kJ input energies was applied to mechanical alloyed Ti5Si3 powder without applying any external pressure. A solid bulk of nanostructured Ti5Si3 with no compositional deviation was obtained in times as short as 159 μsec by the discharge. During an electrical discharge, the heat generated is the required parameter possibly to melt the Ti5Si3 particles and the pinch force can pressurize the melted powder without allowing the formation of pores. Followed rapid cooling preserved the nanostructure of consolidated Ti5Si3 compact. Three stepped processes during an electrical discharge for the formation of nanostructured Ti5Si3 compact are proposed: (a) a physical breakdown of the surface oxide of Ti5Si3 powder particles, (b) melting and condensation of Ti5Si3 powder by the heat and pinch pressure, respectively, and (c) rapid cooling for the preservation of nanostructure. Complete conversion yielding a single phase Ti5Si3 is primarily dominated by the solid-liquid mechanism.

No MeSH data available.


Related in: MedlinePlus

Schematic illustration for the formation of nanostructured Ti5Si3 compact by an electrical discharge of MAed Ti5Si3 powder.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4389978&req=5

fig11: Schematic illustration for the formation of nanostructured Ti5Si3 compact by an electrical discharge of MAed Ti5Si3 powder.

Mentions: Figure 11 shows the formation sequence of nanostructured Ti5Si3 compact by the electrical discharge of MAed Ti5Si3 powder, indicating that the heat generated, pinch pressure, and rapid cooling are required parameters for the consolidation process of nanostructured Ti5Si3.


Self-consolidation mechanism of nanostructured Ti5Si3 compact induced by electrical discharge.

Lee WH, Cheon YW, Jo YH, Seong JG, Jo YJ, Kim YH, Noh MS, Jeong HG, Van Tyne CJ, Chang SY - ScientificWorldJournal (2015)

Schematic illustration for the formation of nanostructured Ti5Si3 compact by an electrical discharge of MAed Ti5Si3 powder.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4389978&req=5

fig11: Schematic illustration for the formation of nanostructured Ti5Si3 compact by an electrical discharge of MAed Ti5Si3 powder.
Mentions: Figure 11 shows the formation sequence of nanostructured Ti5Si3 compact by the electrical discharge of MAed Ti5Si3 powder, indicating that the heat generated, pinch pressure, and rapid cooling are required parameters for the consolidation process of nanostructured Ti5Si3.

Bottom Line: A solid bulk of nanostructured Ti5Si3 with no compositional deviation was obtained in times as short as 159 μsec by the discharge.Followed rapid cooling preserved the nanostructure of consolidated Ti5Si3 compact.Complete conversion yielding a single phase Ti5Si3 is primarily dominated by the solid-liquid mechanism.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 143-747, Republic of Korea.

ABSTRACT
Electrical discharge using a capacitance of 450 μF at 7.0 and 8.0 kJ input energies was applied to mechanical alloyed Ti5Si3 powder without applying any external pressure. A solid bulk of nanostructured Ti5Si3 with no compositional deviation was obtained in times as short as 159 μsec by the discharge. During an electrical discharge, the heat generated is the required parameter possibly to melt the Ti5Si3 particles and the pinch force can pressurize the melted powder without allowing the formation of pores. Followed rapid cooling preserved the nanostructure of consolidated Ti5Si3 compact. Three stepped processes during an electrical discharge for the formation of nanostructured Ti5Si3 compact are proposed: (a) a physical breakdown of the surface oxide of Ti5Si3 powder particles, (b) melting and condensation of Ti5Si3 powder by the heat and pinch pressure, respectively, and (c) rapid cooling for the preservation of nanostructure. Complete conversion yielding a single phase Ti5Si3 is primarily dominated by the solid-liquid mechanism.

No MeSH data available.


Related in: MedlinePlus