Limits...
Current rectifying and resistive switching in high density BiFeO3 nanocapacitor arrays on Nb-SrTiO3 substrates.

Zhao L, Lu Z, Zhang F, Tian G, Song X, Li Z, Huang K, Zhang Z, Qin M - Sci Rep (2015)

Bottom Line: These capacitors also show reversible polarization domain structures, and well-established piezoresponse hysteresis loops.Moreover, apparent current-rectification and resistive switching behaviors were identified in these nanocapacitor cells using conductive-AFM technique, which are attributed to the polarization modulated p-n junctions.These make it possible to utilize these nanocapacitors in high-density (>100 Gbit/inch(2)) nonvolatile memories and other oxide nanoelectronic devices.

View Article: PubMed Central - PubMed

Affiliation: Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China.

ABSTRACT
Ultrahigh density well-registered oxide nanocapacitors are very essential for large scale integrated microelectronic devices. We report the fabrication of well-ordered multiferroic BiFeO3 nanocapacitor arrays by a combination of pulsed laser deposition (PLD) method and anodic aluminum oxide (AAO) template method. The capacitor cells consist of BiFeO3/SrRuO3 (BFO/SRO) heterostructural nanodots on conductive Nb-doped SrTiO3 (Nb-STO) substrates with a lateral size of ~60 nm. These capacitors also show reversible polarization domain structures, and well-established piezoresponse hysteresis loops. Moreover, apparent current-rectification and resistive switching behaviors were identified in these nanocapacitor cells using conductive-AFM technique, which are attributed to the polarization modulated p-n junctions. These make it possible to utilize these nanocapacitors in high-density (>100 Gbit/inch(2)) nonvolatile memories and other oxide nanoelectronic devices.

No MeSH data available.


Local piezoresponse hysteresis loops acquired on a single nanocapacitor dot.(a) the amplitude-voltage and (b) phase-voltage piezoresponse hysteresis loops.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4389717&req=5

f4: Local piezoresponse hysteresis loops acquired on a single nanocapacitor dot.(a) the amplitude-voltage and (b) phase-voltage piezoresponse hysteresis loops.

Mentions: To examine the local electric properties of the nanodots, we measured the piezoelectric hysteresis loops on a single nanocapacitor. The piezoresponse phase-voltage hysteresis and the butterfly-like amplitude-voltage loops are displayed in Fig. 4(a) and (b). At a low bias of ~1 V (not shown here), both the amplitude and phase remain rather stable, indicating no reversal process. Once the bias voltage increases beyond 3 V, the switching becomes apparent, producing to a well-developed butterfly amplitude loop and a square phase hysteresis loops at a bias of 4 V. The two asymmetric coercive fields V+ = 1.32 V and Vāˆ’ = āˆ’2.16 V can be identified, indicating that the polarization reverse is nonsymmetric, as also confirmed by the as-grown states. This may be due to the built-in fields from the work-function difference between the top/bottom electrodes and BFO. From the band structure analysis, we have found that the SRO and NSTO have their work-functions of around 5.2 eV and 4.08 eV, respectively2122, which produces an overall theoretical built-in voltage of 1.12 eV. This breaks the equivalence of two polarization states, and provides a strong tendency to alight the domains to a preferred orientation. In additional, oxygen vacancies adjacent the top electrode introduced during the deposition process may contribute to the observed asymmetric polarization states23.


Current rectifying and resistive switching in high density BiFeO3 nanocapacitor arrays on Nb-SrTiO3 substrates.

Zhao L, Lu Z, Zhang F, Tian G, Song X, Li Z, Huang K, Zhang Z, Qin M - Sci Rep (2015)

Local piezoresponse hysteresis loops acquired on a single nanocapacitor dot.(a) the amplitude-voltage and (b) phase-voltage piezoresponse hysteresis loops.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4389717&req=5

f4: Local piezoresponse hysteresis loops acquired on a single nanocapacitor dot.(a) the amplitude-voltage and (b) phase-voltage piezoresponse hysteresis loops.
Mentions: To examine the local electric properties of the nanodots, we measured the piezoelectric hysteresis loops on a single nanocapacitor. The piezoresponse phase-voltage hysteresis and the butterfly-like amplitude-voltage loops are displayed in Fig. 4(a) and (b). At a low bias of ~1 V (not shown here), both the amplitude and phase remain rather stable, indicating no reversal process. Once the bias voltage increases beyond 3 V, the switching becomes apparent, producing to a well-developed butterfly amplitude loop and a square phase hysteresis loops at a bias of 4 V. The two asymmetric coercive fields V+ = 1.32 V and Vāˆ’ = āˆ’2.16 V can be identified, indicating that the polarization reverse is nonsymmetric, as also confirmed by the as-grown states. This may be due to the built-in fields from the work-function difference between the top/bottom electrodes and BFO. From the band structure analysis, we have found that the SRO and NSTO have their work-functions of around 5.2 eV and 4.08 eV, respectively2122, which produces an overall theoretical built-in voltage of 1.12 eV. This breaks the equivalence of two polarization states, and provides a strong tendency to alight the domains to a preferred orientation. In additional, oxygen vacancies adjacent the top electrode introduced during the deposition process may contribute to the observed asymmetric polarization states23.

Bottom Line: These capacitors also show reversible polarization domain structures, and well-established piezoresponse hysteresis loops.Moreover, apparent current-rectification and resistive switching behaviors were identified in these nanocapacitor cells using conductive-AFM technique, which are attributed to the polarization modulated p-n junctions.These make it possible to utilize these nanocapacitors in high-density (>100 Gbit/inch(2)) nonvolatile memories and other oxide nanoelectronic devices.

View Article: PubMed Central - PubMed

Affiliation: Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China.

ABSTRACT
Ultrahigh density well-registered oxide nanocapacitors are very essential for large scale integrated microelectronic devices. We report the fabrication of well-ordered multiferroic BiFeO3 nanocapacitor arrays by a combination of pulsed laser deposition (PLD) method and anodic aluminum oxide (AAO) template method. The capacitor cells consist of BiFeO3/SrRuO3 (BFO/SRO) heterostructural nanodots on conductive Nb-doped SrTiO3 (Nb-STO) substrates with a lateral size of ~60 nm. These capacitors also show reversible polarization domain structures, and well-established piezoresponse hysteresis loops. Moreover, apparent current-rectification and resistive switching behaviors were identified in these nanocapacitor cells using conductive-AFM technique, which are attributed to the polarization modulated p-n junctions. These make it possible to utilize these nanocapacitors in high-density (>100 Gbit/inch(2)) nonvolatile memories and other oxide nanoelectronic devices.

No MeSH data available.