Limits...
Spatial manipulation with microfluidics.

Lin B, Levchenko A - Front Bioeng Biotechnol (2015)

Bottom Line: How these gradients develop, evolve, and function during development, homeostasis, and various disease states is a subject of intense interest across a variety of disciplines.Microfluidic technologies have become essential tools for investigating gradient sensing in vitro due to their ability to precisely manipulate fluids on demand in well-controlled environments at cellular length scales.This review will highlight their utility for studying gradient sensing along with relevant applications to biology.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomedical Engineering, Systems Biology Institute, Yale University , West Haven, CT , USA.

ABSTRACT
Biochemical gradients convey information through space, time, and concentration, and are ultimately capable of spatially resolving distinct cellular phenotypes, such as differentiation, proliferation, and migration. How these gradients develop, evolve, and function during development, homeostasis, and various disease states is a subject of intense interest across a variety of disciplines. Microfluidic technologies have become essential tools for investigating gradient sensing in vitro due to their ability to precisely manipulate fluids on demand in well-controlled environments at cellular length scales. This review will highlight their utility for studying gradient sensing along with relevant applications to biology.

No MeSH data available.


Related in: MedlinePlus

Biological phenomena influenced by biochemical gradients. A central spatial gradient of factors, shown in red, is depicted, influencing a variety of physiological processes. In clockwise order from the top left: cell migration toward a biochemical gradient (chemotaxis), different gene expression states, illustrated in gradations of blue, in relation to proximity to a gradient during development in a Drosophila embryo (top right) and in homeostasis in a colonic crypt (bottom right), and de novo blood vessel sprouting (angiogenesis).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4389655&req=5

Figure 1: Biological phenomena influenced by biochemical gradients. A central spatial gradient of factors, shown in red, is depicted, influencing a variety of physiological processes. In clockwise order from the top left: cell migration toward a biochemical gradient (chemotaxis), different gene expression states, illustrated in gradations of blue, in relation to proximity to a gradient during development in a Drosophila embryo (top right) and in homeostasis in a colonic crypt (bottom right), and de novo blood vessel sprouting (angiogenesis).

Mentions: Biochemical gradients are utilized in a variety of complex physiological processes as a mechanism to impart distinct signaling based on space (Figure 1). In the developmental biology field, diffusible morphogens, such as Bicoid (Driever and Nüsslein-Volhard, 1988) and Decapentaplegic (Dpp) (Ferguson and Anderson, 1992), exist as spatial gradients and are sufficient to induce spatial patterning in Drosophila embryos. In the cell migration field, a vast array of mammalian cells, including fibroblasts, leukocytes, epithelial, and endothelial cells, become motile in the presence of chemokines or growth factors, and display persistent, directed motion as single cells or collectives toward these molecules when they are spatially graded, a process known as chemotaxis (Singer and Kupfer, 1986). This innate ability to migrate directionally is utilized in immunity, wound healing, and angiogenesis, and is often exploited and selected for during metastatic progression (Roussos et al., 2011). In close analogy to migration, the growth of axon growth cones is biased toward or away from soluble and surface bound molecular gradients during neural patterning (Philipsborn and Bastmeyer, 2007). Last, homeostasis is maintained in the adult intestine by a spatial gradient of Wnt, which instructs transit-amplifying cells to proliferate and differentiate along the crypt axis (Gregorieff and Clevers, 2005).


Spatial manipulation with microfluidics.

Lin B, Levchenko A - Front Bioeng Biotechnol (2015)

Biological phenomena influenced by biochemical gradients. A central spatial gradient of factors, shown in red, is depicted, influencing a variety of physiological processes. In clockwise order from the top left: cell migration toward a biochemical gradient (chemotaxis), different gene expression states, illustrated in gradations of blue, in relation to proximity to a gradient during development in a Drosophila embryo (top right) and in homeostasis in a colonic crypt (bottom right), and de novo blood vessel sprouting (angiogenesis).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4389655&req=5

Figure 1: Biological phenomena influenced by biochemical gradients. A central spatial gradient of factors, shown in red, is depicted, influencing a variety of physiological processes. In clockwise order from the top left: cell migration toward a biochemical gradient (chemotaxis), different gene expression states, illustrated in gradations of blue, in relation to proximity to a gradient during development in a Drosophila embryo (top right) and in homeostasis in a colonic crypt (bottom right), and de novo blood vessel sprouting (angiogenesis).
Mentions: Biochemical gradients are utilized in a variety of complex physiological processes as a mechanism to impart distinct signaling based on space (Figure 1). In the developmental biology field, diffusible morphogens, such as Bicoid (Driever and Nüsslein-Volhard, 1988) and Decapentaplegic (Dpp) (Ferguson and Anderson, 1992), exist as spatial gradients and are sufficient to induce spatial patterning in Drosophila embryos. In the cell migration field, a vast array of mammalian cells, including fibroblasts, leukocytes, epithelial, and endothelial cells, become motile in the presence of chemokines or growth factors, and display persistent, directed motion as single cells or collectives toward these molecules when they are spatially graded, a process known as chemotaxis (Singer and Kupfer, 1986). This innate ability to migrate directionally is utilized in immunity, wound healing, and angiogenesis, and is often exploited and selected for during metastatic progression (Roussos et al., 2011). In close analogy to migration, the growth of axon growth cones is biased toward or away from soluble and surface bound molecular gradients during neural patterning (Philipsborn and Bastmeyer, 2007). Last, homeostasis is maintained in the adult intestine by a spatial gradient of Wnt, which instructs transit-amplifying cells to proliferate and differentiate along the crypt axis (Gregorieff and Clevers, 2005).

Bottom Line: How these gradients develop, evolve, and function during development, homeostasis, and various disease states is a subject of intense interest across a variety of disciplines.Microfluidic technologies have become essential tools for investigating gradient sensing in vitro due to their ability to precisely manipulate fluids on demand in well-controlled environments at cellular length scales.This review will highlight their utility for studying gradient sensing along with relevant applications to biology.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomedical Engineering, Systems Biology Institute, Yale University , West Haven, CT , USA.

ABSTRACT
Biochemical gradients convey information through space, time, and concentration, and are ultimately capable of spatially resolving distinct cellular phenotypes, such as differentiation, proliferation, and migration. How these gradients develop, evolve, and function during development, homeostasis, and various disease states is a subject of intense interest across a variety of disciplines. Microfluidic technologies have become essential tools for investigating gradient sensing in vitro due to their ability to precisely manipulate fluids on demand in well-controlled environments at cellular length scales. This review will highlight their utility for studying gradient sensing along with relevant applications to biology.

No MeSH data available.


Related in: MedlinePlus