Limits...
Diffusion tensor imaging of the human cerebellar pathways and their interplay with cerebral macrostructure.

Keser Z, Hasan KM, Mwangi BI, Kamali A, Ucisik-Keser FE, Riascos RF, Yozbatiran N, Francisco GE, Narayana PA - Front Neuroanat (2015)

Bottom Line: All cerebellar tract volumes were quantified and correlated with volumes of cerebral cortical, subcortical gray matter (GM), cerebral WM and cerebellar GM, and cerebellar WM.On our healthy cohort, the ratio of total cerebellar GM-to-WM was ~3.29 ± 0.24, whereas the ratio of cerebral GM-to-WM was approximately 1.10 ± 0.11.The sum of all cerebellar tract volumes is ~25.8 ± 7.3 mL, or a percentage of 1.6 ± 0.45 of the total intracranial volume (ICV).

View Article: PubMed Central - PubMed

Affiliation: Department of Physical Medicine and Rehabilitation and TIRR Memorial Hermann Neuro-Recovery Research Center, University of Texas Health Science Center Houston Houston, TX, USA.

ABSTRACT
Cerebellar white matter (WM) connections to the central nervous system are classified functionally into the Spinocerebellar (SC), vestibulocerebellar (VC), and cerebrocerebellar subdivisions. The SC pathways project from spinal cord to cerebellum, whereas the VC pathways project from vestibular organs of the inner ear. Cerebrocerebellar connections are composed of feed forward and feedback connections between cerebrum and cerebellum including the cortico-ponto-cerebellar (CPC) pathways being of cortical origin and the dentate-rubro-thalamo-cortical (DRTC) pathway being of cerebellar origin. In this study we systematically quantified the whole cerebellar system connections using diffusion tensor magnetic resonance imaging (DT-MRI). Ten right-handed healthy subjects (7 males and 3 females, age range 20-51 years) were studied. DT-MRI data were acquired with a voxel size = 2 mm × 2 mm × 2 mm at a 3.0 Tesla clinical MRI scanner. The DT-MRI data were prepared and analyzed using anatomically-guided deterministic tractography methods to reconstruct the SC, DRTC, fronto-ponto-cerebellar (FPC), parieto-ponto-cerebellar (PPC), temporo-ponto-cerebellar (TPC) and occipito-ponto-cerebellar (OPC). The DTI-attributes or the cerebellar tracts along with their cortical representation (Brodmann areas) were presented in standard Montréal Neurological Institute space. All cerebellar tract volumes were quantified and correlated with volumes of cerebral cortical, subcortical gray matter (GM), cerebral WM and cerebellar GM, and cerebellar WM. On our healthy cohort, the ratio of total cerebellar GM-to-WM was ~3.29 ± 0.24, whereas the ratio of cerebral GM-to-WM was approximately 1.10 ± 0.11. The sum of all cerebellar tract volumes is ~25.8 ± 7.3 mL, or a percentage of 1.6 ± 0.45 of the total intracranial volume (ICV).

No MeSH data available.


(Upper) Volume of cerebral and cerebellar (crblm) white (WM) and gray matter (GM) are presented. Right-Left volume asymmetry of the cerebral and cerebellar hemispheres is prominent in our ten subjects. Volumes of the red and cerebellar dentate nuclei are reported as well. (Lower) Results of cortical thickness of various part of right and left hemisphere illustrated with the relevant structures such as white matter (WM) (violet), cerebrospinal fluid (CSF) and dentate-rubro-thalamo-cortical tract (DRTC-light blue) The colormap of cortical thickness in mm is shown at the right side.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4389543&req=5

Figure 8: (Upper) Volume of cerebral and cerebellar (crblm) white (WM) and gray matter (GM) are presented. Right-Left volume asymmetry of the cerebral and cerebellar hemispheres is prominent in our ten subjects. Volumes of the red and cerebellar dentate nuclei are reported as well. (Lower) Results of cortical thickness of various part of right and left hemisphere illustrated with the relevant structures such as white matter (WM) (violet), cerebrospinal fluid (CSF) and dentate-rubro-thalamo-cortical tract (DRTC-light blue) The colormap of cortical thickness in mm is shown at the right side.

Mentions: Volumes of cerebral gray and WM and cerebellar gray and WM are presented in Table 3 and Figure 8. In our healthy cohort, volume of right cerebellar and cerebral WM is significantly larger compared to left hemispheric WM (p = 0.00025). The volume of right cerebellar cortex was bigger compared to the left cerebellar cortex (p = 0.003). Cerebral GM-to-WM volume ratio was approximately 1.1:1 (see Meta Analysis in Hasan et al., 2007), whereas for the cerebellum the corresponding ratio was roughly 3.3:1. This 3-fold GM-to-WM volume ratio may offer a key clue to understanding the apparent dominance of the cerebrum over the cerebellum.


Diffusion tensor imaging of the human cerebellar pathways and their interplay with cerebral macrostructure.

Keser Z, Hasan KM, Mwangi BI, Kamali A, Ucisik-Keser FE, Riascos RF, Yozbatiran N, Francisco GE, Narayana PA - Front Neuroanat (2015)

(Upper) Volume of cerebral and cerebellar (crblm) white (WM) and gray matter (GM) are presented. Right-Left volume asymmetry of the cerebral and cerebellar hemispheres is prominent in our ten subjects. Volumes of the red and cerebellar dentate nuclei are reported as well. (Lower) Results of cortical thickness of various part of right and left hemisphere illustrated with the relevant structures such as white matter (WM) (violet), cerebrospinal fluid (CSF) and dentate-rubro-thalamo-cortical tract (DRTC-light blue) The colormap of cortical thickness in mm is shown at the right side.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4389543&req=5

Figure 8: (Upper) Volume of cerebral and cerebellar (crblm) white (WM) and gray matter (GM) are presented. Right-Left volume asymmetry of the cerebral and cerebellar hemispheres is prominent in our ten subjects. Volumes of the red and cerebellar dentate nuclei are reported as well. (Lower) Results of cortical thickness of various part of right and left hemisphere illustrated with the relevant structures such as white matter (WM) (violet), cerebrospinal fluid (CSF) and dentate-rubro-thalamo-cortical tract (DRTC-light blue) The colormap of cortical thickness in mm is shown at the right side.
Mentions: Volumes of cerebral gray and WM and cerebellar gray and WM are presented in Table 3 and Figure 8. In our healthy cohort, volume of right cerebellar and cerebral WM is significantly larger compared to left hemispheric WM (p = 0.00025). The volume of right cerebellar cortex was bigger compared to the left cerebellar cortex (p = 0.003). Cerebral GM-to-WM volume ratio was approximately 1.1:1 (see Meta Analysis in Hasan et al., 2007), whereas for the cerebellum the corresponding ratio was roughly 3.3:1. This 3-fold GM-to-WM volume ratio may offer a key clue to understanding the apparent dominance of the cerebrum over the cerebellum.

Bottom Line: All cerebellar tract volumes were quantified and correlated with volumes of cerebral cortical, subcortical gray matter (GM), cerebral WM and cerebellar GM, and cerebellar WM.On our healthy cohort, the ratio of total cerebellar GM-to-WM was ~3.29 ± 0.24, whereas the ratio of cerebral GM-to-WM was approximately 1.10 ± 0.11.The sum of all cerebellar tract volumes is ~25.8 ± 7.3 mL, or a percentage of 1.6 ± 0.45 of the total intracranial volume (ICV).

View Article: PubMed Central - PubMed

Affiliation: Department of Physical Medicine and Rehabilitation and TIRR Memorial Hermann Neuro-Recovery Research Center, University of Texas Health Science Center Houston Houston, TX, USA.

ABSTRACT
Cerebellar white matter (WM) connections to the central nervous system are classified functionally into the Spinocerebellar (SC), vestibulocerebellar (VC), and cerebrocerebellar subdivisions. The SC pathways project from spinal cord to cerebellum, whereas the VC pathways project from vestibular organs of the inner ear. Cerebrocerebellar connections are composed of feed forward and feedback connections between cerebrum and cerebellum including the cortico-ponto-cerebellar (CPC) pathways being of cortical origin and the dentate-rubro-thalamo-cortical (DRTC) pathway being of cerebellar origin. In this study we systematically quantified the whole cerebellar system connections using diffusion tensor magnetic resonance imaging (DT-MRI). Ten right-handed healthy subjects (7 males and 3 females, age range 20-51 years) were studied. DT-MRI data were acquired with a voxel size = 2 mm × 2 mm × 2 mm at a 3.0 Tesla clinical MRI scanner. The DT-MRI data were prepared and analyzed using anatomically-guided deterministic tractography methods to reconstruct the SC, DRTC, fronto-ponto-cerebellar (FPC), parieto-ponto-cerebellar (PPC), temporo-ponto-cerebellar (TPC) and occipito-ponto-cerebellar (OPC). The DTI-attributes or the cerebellar tracts along with their cortical representation (Brodmann areas) were presented in standard Montréal Neurological Institute space. All cerebellar tract volumes were quantified and correlated with volumes of cerebral cortical, subcortical gray matter (GM), cerebral WM and cerebellar GM, and cerebellar WM. On our healthy cohort, the ratio of total cerebellar GM-to-WM was ~3.29 ± 0.24, whereas the ratio of cerebral GM-to-WM was approximately 1.10 ± 0.11. The sum of all cerebellar tract volumes is ~25.8 ± 7.3 mL, or a percentage of 1.6 ± 0.45 of the total intracranial volume (ICV).

No MeSH data available.