Limits...
Intravenous transplantation of very small embryonic like stem cells in treatment of diabetes mellitus.

Abouzaripour M, Ragerdi Kashani I, Pasbakhsh P, Atlasy N - Avicenna J Med Biotechnol (2015 Jan-Mar)

Bottom Line: It was proved that CD45-, CXCR4+, and Sca1+ sorted cells express oct4 and SSEA1.Our results revealed that intravenously implanted VSELs could migrate into the pancreas of hosts and survive in the diabetic pancreas.In treated groups, blood glucose decreased significantly for at least two month and the weights of mice increased gradually.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

ABSTRACT

Background: Diabetes Mellitus (DM), simply known as diabetes, refers to a group of metabolic diseases in which there are high blood sugar levels over a prolonged period. In this study, the feasibility and safety of intravenous transplantation of Very Small Embryonic Like stem cells (VSELs) were investigated for diabetes repair, and finally the migration and distribution of these cells in hosts were observed.

Methods: Mouse bone marrow VSELs were isolated by Fluorescent Activating Cell Sorting (FACS) method by using fluorescent antibodies against CD45, CXCR4 and Sca1 markers. Sorted cells were analyzed for expression of oct4 and SSEA1 markers with immunocytochemistry staining method. To determine multilineage differentiation, sorted cells were differentiated to Schwann, osteocyte and beta cells. Ten days after the establishment of a mouse model of pancreas necrosis, DiI-labeled VSELs were injected into these mice via tail vein. Pancreases were harvested 4 weeks after transplantation and the sections of these tissues were observed under fluorescent microscope.

Results: It was proved that CD45-, CXCR4+, and Sca1+ sorted cells express oct4 and SSEA1. Our results revealed that intravenously implanted VSELs could migrate into the pancreas of hosts and survive in the diabetic pancreas. In treated groups, blood glucose decreased significantly for at least two month and the weights of mice increased gradually.

Conclusion: This study provides a strategy for using VSELs for curing diabetes and other regenerative diseases, and the strategy is considered an alternative for other stem cell types.

No MeSH data available.


Related in: MedlinePlus

[FACS analysis of mouse bone marrow cells]. Erythrocytes were removed by hypotonic lysis and bone marrow cells were stained with CD45, Sca-1 and CXCr4. VSEL stem cells were sorted by BD FACS Aria II cell sorter, following immunofluorescence staining for CD45, Sca-1 and CXCr4. Panel A: Gated cell population of interest. Panels B and C: Bone marrow mononuclear cells visualized on dot plots showing their FSC and SSC signals related to the size and granularity of the cell, respectively. Panel D: Separation of CD45 negative and positive cells. Panel E: CD45 negative cells gated based on Sca1 and CXCr4 positivity (Q2 area)].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4388887&req=5

Figure 0007: [FACS analysis of mouse bone marrow cells]. Erythrocytes were removed by hypotonic lysis and bone marrow cells were stained with CD45, Sca-1 and CXCr4. VSEL stem cells were sorted by BD FACS Aria II cell sorter, following immunofluorescence staining for CD45, Sca-1 and CXCr4. Panel A: Gated cell population of interest. Panels B and C: Bone marrow mononuclear cells visualized on dot plots showing their FSC and SSC signals related to the size and granularity of the cell, respectively. Panel D: Separation of CD45 negative and positive cells. Panel E: CD45 negative cells gated based on Sca1 and CXCr4 positivity (Q2 area)].

Mentions: In multicolor flow cytometric sorting analysis (FACS) of mouse bone marrow cells, from CD45 negative population, Sca1 and CXCr4 positive cells were gated. In a 3 color analysis, APC-Cy7 anti-mouse cd45 antibody was used for isolation of CD45 negative and positive cells, then from CD45 negative population, Sca1 and CXCr4 positive cells with anti-mouse Sca1 FITC and anti-mouse CXCr4 PE antibodies were sorted (Figure 7).


Intravenous transplantation of very small embryonic like stem cells in treatment of diabetes mellitus.

Abouzaripour M, Ragerdi Kashani I, Pasbakhsh P, Atlasy N - Avicenna J Med Biotechnol (2015 Jan-Mar)

[FACS analysis of mouse bone marrow cells]. Erythrocytes were removed by hypotonic lysis and bone marrow cells were stained with CD45, Sca-1 and CXCr4. VSEL stem cells were sorted by BD FACS Aria II cell sorter, following immunofluorescence staining for CD45, Sca-1 and CXCr4. Panel A: Gated cell population of interest. Panels B and C: Bone marrow mononuclear cells visualized on dot plots showing their FSC and SSC signals related to the size and granularity of the cell, respectively. Panel D: Separation of CD45 negative and positive cells. Panel E: CD45 negative cells gated based on Sca1 and CXCr4 positivity (Q2 area)].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4388887&req=5

Figure 0007: [FACS analysis of mouse bone marrow cells]. Erythrocytes were removed by hypotonic lysis and bone marrow cells were stained with CD45, Sca-1 and CXCr4. VSEL stem cells were sorted by BD FACS Aria II cell sorter, following immunofluorescence staining for CD45, Sca-1 and CXCr4. Panel A: Gated cell population of interest. Panels B and C: Bone marrow mononuclear cells visualized on dot plots showing their FSC and SSC signals related to the size and granularity of the cell, respectively. Panel D: Separation of CD45 negative and positive cells. Panel E: CD45 negative cells gated based on Sca1 and CXCr4 positivity (Q2 area)].
Mentions: In multicolor flow cytometric sorting analysis (FACS) of mouse bone marrow cells, from CD45 negative population, Sca1 and CXCr4 positive cells were gated. In a 3 color analysis, APC-Cy7 anti-mouse cd45 antibody was used for isolation of CD45 negative and positive cells, then from CD45 negative population, Sca1 and CXCr4 positive cells with anti-mouse Sca1 FITC and anti-mouse CXCr4 PE antibodies were sorted (Figure 7).

Bottom Line: It was proved that CD45-, CXCR4+, and Sca1+ sorted cells express oct4 and SSEA1.Our results revealed that intravenously implanted VSELs could migrate into the pancreas of hosts and survive in the diabetic pancreas.In treated groups, blood glucose decreased significantly for at least two month and the weights of mice increased gradually.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

ABSTRACT

Background: Diabetes Mellitus (DM), simply known as diabetes, refers to a group of metabolic diseases in which there are high blood sugar levels over a prolonged period. In this study, the feasibility and safety of intravenous transplantation of Very Small Embryonic Like stem cells (VSELs) were investigated for diabetes repair, and finally the migration and distribution of these cells in hosts were observed.

Methods: Mouse bone marrow VSELs were isolated by Fluorescent Activating Cell Sorting (FACS) method by using fluorescent antibodies against CD45, CXCR4 and Sca1 markers. Sorted cells were analyzed for expression of oct4 and SSEA1 markers with immunocytochemistry staining method. To determine multilineage differentiation, sorted cells were differentiated to Schwann, osteocyte and beta cells. Ten days after the establishment of a mouse model of pancreas necrosis, DiI-labeled VSELs were injected into these mice via tail vein. Pancreases were harvested 4 weeks after transplantation and the sections of these tissues were observed under fluorescent microscope.

Results: It was proved that CD45-, CXCR4+, and Sca1+ sorted cells express oct4 and SSEA1. Our results revealed that intravenously implanted VSELs could migrate into the pancreas of hosts and survive in the diabetic pancreas. In treated groups, blood glucose decreased significantly for at least two month and the weights of mice increased gradually.

Conclusion: This study provides a strategy for using VSELs for curing diabetes and other regenerative diseases, and the strategy is considered an alternative for other stem cell types.

No MeSH data available.


Related in: MedlinePlus