Reconstructible phylogenetic networks: do not distinguish the indistinguishable.
Bottom Line:
This identifiability problem is partially solved by accounting for branch lengths, although this merely reduces the frequency of the problem.For any given set of indistinguishable networks, we define a canonical network that, under mild assumptions, is unique and thus representative of the entire set.While on the methodological side this will imply a drastic reduction of the solution space in network inference, for the study of reticulate evolution this is a fundamental limitation that will require an important change of perspective when interpreting phylogenetic networks.
View Article:
PubMed Central - PubMed
Affiliation: Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM, UMR 5506) CNRS, Université de Montpellier, France; Institut de Biologie Computationnelle, Montpellier, France.
ABSTRACT
Phylogenetic networks represent the evolution of organisms that have undergone reticulate events, such as recombination, hybrid speciation or lateral gene transfer. An important way to interpret a phylogenetic network is in terms of the trees it displays, which represent all the possible histories of the characters carried by the organisms in the network. Interestingly, however, different networks may display exactly the same set of trees, an observation that poses a problem for network reconstruction: from the perspective of many inference methods such networks are "indistinguishable". This is true for all methods that evaluate a phylogenetic network solely on the basis of how well the displayed trees fit the available data, including all methods based on input data consisting of clades, triples, quartets, or trees with any number of taxa, and also sequence-based approaches such as popular formalisations of maximum parsimony and maximum likelihood for networks. This identifiability problem is partially solved by accounting for branch lengths, although this merely reduces the frequency of the problem. Here we propose that network inference methods should only attempt to reconstruct what they can uniquely identify. To this end, we introduce a novel definition of what constitutes a uniquely reconstructible network. For any given set of indistinguishable networks, we define a canonical network that, under mild assumptions, is unique and thus representative of the entire set. Given data that underwent reticulate evolution, only the canonical form of the underlying phylogenetic network can be uniquely reconstructed. While on the methodological side this will imply a drastic reduction of the solution space in network inference, for the study of reticulate evolution this is a fundamental limitation that will require an important change of perspective when interpreting phylogenetic networks. No MeSH data available. |
Related In:
Results -
Collection
License getmorefigures.php?uid=PMC4388854&req=5
Mentions: Finally, a regular network is a network topology N in which, among other requirements, no two distinct nodes have the same set of descendant leaves (see [48] for a formal definition and characterizations). This requirement implies, among other things, that N cannot contain any reticulation v with outdegree 1 (v and its direct descendant would have the same descendant leaves), which in turn implies that regular networks are special cases of our canonical networks (the latter however also specify edge lengths). In fact regular networks satisfy a property that is analogous to the one we prove here for canonical networks: a regular network N is uniquely determined by the tree topologies that it displays [51], meaning that there can be no other regular network N′ displaying exactly the same set of tree topologies. Willson [51] shows this constructively by providing an algorithm that, given the (exponentially large) set of tree topologies displayed by a regular network R, reconstructs R itself. However, unlike for our canonical forms, for a given network there may exist no regular network displaying the same set of trees (e.g. consider the topology of N′′ in Fig. 5b), thus failing to meet the existence goal. Regularity is in fact a very restrictive constraint for a network. For example, none of the networks in Fig. 5 and Fig. 7 is regular, despite the fact that their topologies are uniquely determined by the trees with edge lengths that they display (a consequence of our results further below). Finally, going back to Fig. 6, collapsing the edge above taxa c and d in R(N1) yields the regular network displaying the same tree topologies as N1 and N2. Again, this shows that the canonical form retains more of the complexity of the original network than its regular counterpart. |
View Article: PubMed Central - PubMed
Affiliation: Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM, UMR 5506) CNRS, Université de Montpellier, France; Institut de Biologie Computationnelle, Montpellier, France.
No MeSH data available.