Limits...
Physical and chemical mechanisms in oxide-based resistance random access memory.

Chang KC, Chang TC, Tsai TM, Zhang R, Hung YC, Syu YE, Chang YF, Chen MC, Chu TJ, Chen HL, Pan CH, Shih CC, Zheng JC, Sze SM - Nanoscale Res Lett (2015)

Bottom Line: Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device.The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process.Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan.

ABSTRACT
In this review, we provide an overview of our work in resistive switching mechanisms on oxide-based resistance random access memory (RRAM) devices. Based on the investigation of physical and chemical mechanisms, we focus on its materials, device structures, and treatment methods so as to provide an in-depth perspective of state-of-the-art oxide-based RRAM. The critical voltage and constant reaction energy properties were found, which can be used to prospectively modulate voltage and operation time to control RRAM device working performance and forecast material composition. The quantized switching phenomena in RRAM devices were demonstrated at ultra-cryogenic temperature (4K), which is attributed to the atomic-level reaction in metallic filament. In the aspect of chemical mechanisms, we use the Coulomb Faraday theorem to investigate the chemical reaction equations of RRAM for the first time. We can clearly observe that the first-order reaction series is the basis for chemical reaction during reset process in the study. Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device. As for its materials, silicon oxide is compatible to semiconductor fabrication lines. It is especially promising for the silicon oxide-doped metal technology to be introduced into the industry. Based on that, double-ended graphene oxide-doped silicon oxide based via-structure RRAM with filament self-aligning formation, and self-current limiting operation ability is demonstrated. The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process. Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

No MeSH data available.


Atomic-level quantized reset reaction resistance ratio. The inset shows the cross-sectional numbers of effective atoms after reaction [5].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4388104&req=5

Fig9: Atomic-level quantized reset reaction resistance ratio. The inset shows the cross-sectional numbers of effective atoms after reaction [5].

Mentions: The ratio of initial and post-reactive numbers of atom corresponds to a specific ratio of resistance states during the reset procedure. Every transition resistance states can be extracted from the slopes of experimental data in Figure 4 for each quantized step of I-V curve at ultra-cryogenic temperature (4 K). Based on the above discussion for resistance calculation, the theoretical resistance ratio of effective cross section between beginning and intermediate states can be calculated during the reset process. The experimental values complied exactly with the theoretical calculation data as shown in Figure 9. The results demonstrate that the reaction of reset procedure is an atomic-level reaction, leading to the decrease of the effective cross-sectional conduction area, which externally exhibits as the rising of resistance. The original number of atoms is 13, which is calculated from the experimental data in the intermediate region of reset procedure as shown in the enlarge inset of Figure 4. Because the magnitude of change in resistance value is not so pronounced at the beginning of reset procedure, leading to the number of atoms on effective conduction filament area in initial LRS, it is difficult to observe through Figure 4. However, we can obtain the atomic numbers of effective cross section in the initial LRS by the relationship of resistance value and conduction area of filament.Figure 9


Physical and chemical mechanisms in oxide-based resistance random access memory.

Chang KC, Chang TC, Tsai TM, Zhang R, Hung YC, Syu YE, Chang YF, Chen MC, Chu TJ, Chen HL, Pan CH, Shih CC, Zheng JC, Sze SM - Nanoscale Res Lett (2015)

Atomic-level quantized reset reaction resistance ratio. The inset shows the cross-sectional numbers of effective atoms after reaction [5].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4388104&req=5

Fig9: Atomic-level quantized reset reaction resistance ratio. The inset shows the cross-sectional numbers of effective atoms after reaction [5].
Mentions: The ratio of initial and post-reactive numbers of atom corresponds to a specific ratio of resistance states during the reset procedure. Every transition resistance states can be extracted from the slopes of experimental data in Figure 4 for each quantized step of I-V curve at ultra-cryogenic temperature (4 K). Based on the above discussion for resistance calculation, the theoretical resistance ratio of effective cross section between beginning and intermediate states can be calculated during the reset process. The experimental values complied exactly with the theoretical calculation data as shown in Figure 9. The results demonstrate that the reaction of reset procedure is an atomic-level reaction, leading to the decrease of the effective cross-sectional conduction area, which externally exhibits as the rising of resistance. The original number of atoms is 13, which is calculated from the experimental data in the intermediate region of reset procedure as shown in the enlarge inset of Figure 4. Because the magnitude of change in resistance value is not so pronounced at the beginning of reset procedure, leading to the number of atoms on effective conduction filament area in initial LRS, it is difficult to observe through Figure 4. However, we can obtain the atomic numbers of effective cross section in the initial LRS by the relationship of resistance value and conduction area of filament.Figure 9

Bottom Line: Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device.The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process.Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan.

ABSTRACT
In this review, we provide an overview of our work in resistive switching mechanisms on oxide-based resistance random access memory (RRAM) devices. Based on the investigation of physical and chemical mechanisms, we focus on its materials, device structures, and treatment methods so as to provide an in-depth perspective of state-of-the-art oxide-based RRAM. The critical voltage and constant reaction energy properties were found, which can be used to prospectively modulate voltage and operation time to control RRAM device working performance and forecast material composition. The quantized switching phenomena in RRAM devices were demonstrated at ultra-cryogenic temperature (4K), which is attributed to the atomic-level reaction in metallic filament. In the aspect of chemical mechanisms, we use the Coulomb Faraday theorem to investigate the chemical reaction equations of RRAM for the first time. We can clearly observe that the first-order reaction series is the basis for chemical reaction during reset process in the study. Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device. As for its materials, silicon oxide is compatible to semiconductor fabrication lines. It is especially promising for the silicon oxide-doped metal technology to be introduced into the industry. Based on that, double-ended graphene oxide-doped silicon oxide based via-structure RRAM with filament self-aligning formation, and self-current limiting operation ability is demonstrated. The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process. Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

No MeSH data available.