Limits...
Physical and chemical mechanisms in oxide-based resistance random access memory.

Chang KC, Chang TC, Tsai TM, Zhang R, Hung YC, Syu YE, Chang YF, Chen MC, Chu TJ, Chen HL, Pan CH, Shih CC, Zheng JC, Sze SM - Nanoscale Res Lett (2015)

Bottom Line: Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device.The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process.Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan.

ABSTRACT
In this review, we provide an overview of our work in resistive switching mechanisms on oxide-based resistance random access memory (RRAM) devices. Based on the investigation of physical and chemical mechanisms, we focus on its materials, device structures, and treatment methods so as to provide an in-depth perspective of state-of-the-art oxide-based RRAM. The critical voltage and constant reaction energy properties were found, which can be used to prospectively modulate voltage and operation time to control RRAM device working performance and forecast material composition. The quantized switching phenomena in RRAM devices were demonstrated at ultra-cryogenic temperature (4K), which is attributed to the atomic-level reaction in metallic filament. In the aspect of chemical mechanisms, we use the Coulomb Faraday theorem to investigate the chemical reaction equations of RRAM for the first time. We can clearly observe that the first-order reaction series is the basis for chemical reaction during reset process in the study. Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device. As for its materials, silicon oxide is compatible to semiconductor fabrication lines. It is especially promising for the silicon oxide-doped metal technology to be introduced into the industry. Based on that, double-ended graphene oxide-doped silicon oxide based via-structure RRAM with filament self-aligning formation, and self-current limiting operation ability is demonstrated. The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process. Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

No MeSH data available.


The schematic diagram of carrier hopping model in Sn:SiOxfilm after SCCO2treatment[146].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4388104&req=5

Fig36: The schematic diagram of carrier hopping model in Sn:SiOxfilm after SCCO2treatment[146].

Mentions: As for the LRS of Sn:SiOx film, the conductive filament will be formed in Sn:SiOx film after the forming process. Then, the carriers were transported through these dangling bonds, leading to the current conduction dominated by Ohmic conduction. If the Sn:SiOx film was put into the SCCO2 fluid environment, the tin metal in Sn:SiOx thin film will be isolated due to hydration-dehydration reaction by SCCO2 treatment. Only if the conductive filament was applied to the Sn:SiOx film, the tin metal will be isolated through SCCO2 treatment, leading to the electrical current conduction in LRS of Sn:SiOx film transferred to hopping conduction as shown in FigureĀ 36.Figure 36


Physical and chemical mechanisms in oxide-based resistance random access memory.

Chang KC, Chang TC, Tsai TM, Zhang R, Hung YC, Syu YE, Chang YF, Chen MC, Chu TJ, Chen HL, Pan CH, Shih CC, Zheng JC, Sze SM - Nanoscale Res Lett (2015)

The schematic diagram of carrier hopping model in Sn:SiOxfilm after SCCO2treatment[146].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4388104&req=5

Fig36: The schematic diagram of carrier hopping model in Sn:SiOxfilm after SCCO2treatment[146].
Mentions: As for the LRS of Sn:SiOx film, the conductive filament will be formed in Sn:SiOx film after the forming process. Then, the carriers were transported through these dangling bonds, leading to the current conduction dominated by Ohmic conduction. If the Sn:SiOx film was put into the SCCO2 fluid environment, the tin metal in Sn:SiOx thin film will be isolated due to hydration-dehydration reaction by SCCO2 treatment. Only if the conductive filament was applied to the Sn:SiOx film, the tin metal will be isolated through SCCO2 treatment, leading to the electrical current conduction in LRS of Sn:SiOx film transferred to hopping conduction as shown in FigureĀ 36.Figure 36

Bottom Line: Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device.The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process.Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan.

ABSTRACT
In this review, we provide an overview of our work in resistive switching mechanisms on oxide-based resistance random access memory (RRAM) devices. Based on the investigation of physical and chemical mechanisms, we focus on its materials, device structures, and treatment methods so as to provide an in-depth perspective of state-of-the-art oxide-based RRAM. The critical voltage and constant reaction energy properties were found, which can be used to prospectively modulate voltage and operation time to control RRAM device working performance and forecast material composition. The quantized switching phenomena in RRAM devices were demonstrated at ultra-cryogenic temperature (4K), which is attributed to the atomic-level reaction in metallic filament. In the aspect of chemical mechanisms, we use the Coulomb Faraday theorem to investigate the chemical reaction equations of RRAM for the first time. We can clearly observe that the first-order reaction series is the basis for chemical reaction during reset process in the study. Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device. As for its materials, silicon oxide is compatible to semiconductor fabrication lines. It is especially promising for the silicon oxide-doped metal technology to be introduced into the industry. Based on that, double-ended graphene oxide-doped silicon oxide based via-structure RRAM with filament self-aligning formation, and self-current limiting operation ability is demonstrated. The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process. Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

No MeSH data available.