Limits...
Physical and chemical mechanisms in oxide-based resistance random access memory.

Chang KC, Chang TC, Tsai TM, Zhang R, Hung YC, Syu YE, Chang YF, Chen MC, Chu TJ, Chen HL, Pan CH, Shih CC, Zheng JC, Sze SM - Nanoscale Res Lett (2015)

Bottom Line: Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device.The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process.Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan.

ABSTRACT
In this review, we provide an overview of our work in resistive switching mechanisms on oxide-based resistance random access memory (RRAM) devices. Based on the investigation of physical and chemical mechanisms, we focus on its materials, device structures, and treatment methods so as to provide an in-depth perspective of state-of-the-art oxide-based RRAM. The critical voltage and constant reaction energy properties were found, which can be used to prospectively modulate voltage and operation time to control RRAM device working performance and forecast material composition. The quantized switching phenomena in RRAM devices were demonstrated at ultra-cryogenic temperature (4K), which is attributed to the atomic-level reaction in metallic filament. In the aspect of chemical mechanisms, we use the Coulomb Faraday theorem to investigate the chemical reaction equations of RRAM for the first time. We can clearly observe that the first-order reaction series is the basis for chemical reaction during reset process in the study. Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device. As for its materials, silicon oxide is compatible to semiconductor fabrication lines. It is especially promising for the silicon oxide-doped metal technology to be introduced into the industry. Based on that, double-ended graphene oxide-doped silicon oxide based via-structure RRAM with filament self-aligning formation, and self-current limiting operation ability is demonstrated. The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process. Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

No MeSH data available.


TheI-Vcurves in the HRS of Sn:SiOxdevices before and after SCCO2treatment. The fitting results of I-V curves in the HRS for the devices before and after SCCO2 treatment shown as the right side [146].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4388104&req=5

Fig34: TheI-Vcurves in the HRS of Sn:SiOxdevices before and after SCCO2treatment. The fitting results of I-V curves in the HRS for the devices before and after SCCO2 treatment shown as the right side [146].

Mentions: In addition, we also analyzed the current conduction mechanism in HRS of Sn:SiOx with and without SCCO2 treatment as shown in FigureĀ 34. The relationship in the curve of ln(I/V) versus the square root of the applied voltage (V1/2) is linear. The results revealed that the carrier transport of Sn:SiOx film was dominated by Poole-Frenkel conduction due to the trap in the film. After SCCO2 treatment, the current conduction mechanism will transfer to Schottky emission because of the improvement of dielectric properties.Figure 34


Physical and chemical mechanisms in oxide-based resistance random access memory.

Chang KC, Chang TC, Tsai TM, Zhang R, Hung YC, Syu YE, Chang YF, Chen MC, Chu TJ, Chen HL, Pan CH, Shih CC, Zheng JC, Sze SM - Nanoscale Res Lett (2015)

TheI-Vcurves in the HRS of Sn:SiOxdevices before and after SCCO2treatment. The fitting results of I-V curves in the HRS for the devices before and after SCCO2 treatment shown as the right side [146].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4388104&req=5

Fig34: TheI-Vcurves in the HRS of Sn:SiOxdevices before and after SCCO2treatment. The fitting results of I-V curves in the HRS for the devices before and after SCCO2 treatment shown as the right side [146].
Mentions: In addition, we also analyzed the current conduction mechanism in HRS of Sn:SiOx with and without SCCO2 treatment as shown in FigureĀ 34. The relationship in the curve of ln(I/V) versus the square root of the applied voltage (V1/2) is linear. The results revealed that the carrier transport of Sn:SiOx film was dominated by Poole-Frenkel conduction due to the trap in the film. After SCCO2 treatment, the current conduction mechanism will transfer to Schottky emission because of the improvement of dielectric properties.Figure 34

Bottom Line: Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device.The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process.Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan.

ABSTRACT
In this review, we provide an overview of our work in resistive switching mechanisms on oxide-based resistance random access memory (RRAM) devices. Based on the investigation of physical and chemical mechanisms, we focus on its materials, device structures, and treatment methods so as to provide an in-depth perspective of state-of-the-art oxide-based RRAM. The critical voltage and constant reaction energy properties were found, which can be used to prospectively modulate voltage and operation time to control RRAM device working performance and forecast material composition. The quantized switching phenomena in RRAM devices were demonstrated at ultra-cryogenic temperature (4K), which is attributed to the atomic-level reaction in metallic filament. In the aspect of chemical mechanisms, we use the Coulomb Faraday theorem to investigate the chemical reaction equations of RRAM for the first time. We can clearly observe that the first-order reaction series is the basis for chemical reaction during reset process in the study. Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device. As for its materials, silicon oxide is compatible to semiconductor fabrication lines. It is especially promising for the silicon oxide-doped metal technology to be introduced into the industry. Based on that, double-ended graphene oxide-doped silicon oxide based via-structure RRAM with filament self-aligning formation, and self-current limiting operation ability is demonstrated. The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process. Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

No MeSH data available.