Limits...
Physical and chemical mechanisms in oxide-based resistance random access memory.

Chang KC, Chang TC, Tsai TM, Zhang R, Hung YC, Syu YE, Chang YF, Chen MC, Chu TJ, Chen HL, Pan CH, Shih CC, Zheng JC, Sze SM - Nanoscale Res Lett (2015)

Bottom Line: Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device.The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process.Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan.

ABSTRACT
In this review, we provide an overview of our work in resistive switching mechanisms on oxide-based resistance random access memory (RRAM) devices. Based on the investigation of physical and chemical mechanisms, we focus on its materials, device structures, and treatment methods so as to provide an in-depth perspective of state-of-the-art oxide-based RRAM. The critical voltage and constant reaction energy properties were found, which can be used to prospectively modulate voltage and operation time to control RRAM device working performance and forecast material composition. The quantized switching phenomena in RRAM devices were demonstrated at ultra-cryogenic temperature (4K), which is attributed to the atomic-level reaction in metallic filament. In the aspect of chemical mechanisms, we use the Coulomb Faraday theorem to investigate the chemical reaction equations of RRAM for the first time. We can clearly observe that the first-order reaction series is the basis for chemical reaction during reset process in the study. Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device. As for its materials, silicon oxide is compatible to semiconductor fabrication lines. It is especially promising for the silicon oxide-doped metal technology to be introduced into the industry. Based on that, double-ended graphene oxide-doped silicon oxide based via-structure RRAM with filament self-aligning formation, and self-current limiting operation ability is demonstrated. The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process. Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

No MeSH data available.


Physical properties and schematic diagram of supercritical CO2fluids systems.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4388104&req=5

Fig30: Physical properties and schematic diagram of supercritical CO2fluids systems.

Mentions: The supercritical CO2 (SCCO2) fluid technology was used to improve the dielectric properties and performance of various thin film transistors (TFTs), such as hydrogenated amorphous-silicon TFTs and ZnO TFTs [134-138]. Therefore, the effect of SCCO2 treatment on RRAM was worthy to evaluate for low temperature process [139-146]. Figure 30 shows the critical point definition for supercritical fluid and the schematic diagram for SCCO2 treatment facilities. Supercritical phase is distinctive with its characteristics of high penetration of gas and solubility of liquid. The supercritical water fluid has tremendous oxidation property [147]. However, high critical temperature and high critical pressure are essential conditions to achieve supercritical water fluid. So it is difficult to realize through modern facilities (the table of Figure 30). Thus we adopted CO2, as it is easier for CO2 to achieve supercritical point and meanwhile it is relatively inert, which will not react with the treated materials. By adding a little water into supercritical CO2 fluids, the liquid water can approach to the supercritical fluid phase due to the mixed SCCO2 fluids close to idea solution.Figure 30


Physical and chemical mechanisms in oxide-based resistance random access memory.

Chang KC, Chang TC, Tsai TM, Zhang R, Hung YC, Syu YE, Chang YF, Chen MC, Chu TJ, Chen HL, Pan CH, Shih CC, Zheng JC, Sze SM - Nanoscale Res Lett (2015)

Physical properties and schematic diagram of supercritical CO2fluids systems.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4388104&req=5

Fig30: Physical properties and schematic diagram of supercritical CO2fluids systems.
Mentions: The supercritical CO2 (SCCO2) fluid technology was used to improve the dielectric properties and performance of various thin film transistors (TFTs), such as hydrogenated amorphous-silicon TFTs and ZnO TFTs [134-138]. Therefore, the effect of SCCO2 treatment on RRAM was worthy to evaluate for low temperature process [139-146]. Figure 30 shows the critical point definition for supercritical fluid and the schematic diagram for SCCO2 treatment facilities. Supercritical phase is distinctive with its characteristics of high penetration of gas and solubility of liquid. The supercritical water fluid has tremendous oxidation property [147]. However, high critical temperature and high critical pressure are essential conditions to achieve supercritical water fluid. So it is difficult to realize through modern facilities (the table of Figure 30). Thus we adopted CO2, as it is easier for CO2 to achieve supercritical point and meanwhile it is relatively inert, which will not react with the treated materials. By adding a little water into supercritical CO2 fluids, the liquid water can approach to the supercritical fluid phase due to the mixed SCCO2 fluids close to idea solution.Figure 30

Bottom Line: Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device.The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process.Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan.

ABSTRACT
In this review, we provide an overview of our work in resistive switching mechanisms on oxide-based resistance random access memory (RRAM) devices. Based on the investigation of physical and chemical mechanisms, we focus on its materials, device structures, and treatment methods so as to provide an in-depth perspective of state-of-the-art oxide-based RRAM. The critical voltage and constant reaction energy properties were found, which can be used to prospectively modulate voltage and operation time to control RRAM device working performance and forecast material composition. The quantized switching phenomena in RRAM devices were demonstrated at ultra-cryogenic temperature (4K), which is attributed to the atomic-level reaction in metallic filament. In the aspect of chemical mechanisms, we use the Coulomb Faraday theorem to investigate the chemical reaction equations of RRAM for the first time. We can clearly observe that the first-order reaction series is the basis for chemical reaction during reset process in the study. Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device. As for its materials, silicon oxide is compatible to semiconductor fabrication lines. It is especially promising for the silicon oxide-doped metal technology to be introduced into the industry. Based on that, double-ended graphene oxide-doped silicon oxide based via-structure RRAM with filament self-aligning formation, and self-current limiting operation ability is demonstrated. The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process. Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

No MeSH data available.