Limits...
Physical and chemical mechanisms in oxide-based resistance random access memory.

Chang KC, Chang TC, Tsai TM, Zhang R, Hung YC, Syu YE, Chang YF, Chen MC, Chu TJ, Chen HL, Pan CH, Shih CC, Zheng JC, Sze SM - Nanoscale Res Lett (2015)

Bottom Line: Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device.The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process.Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan.

ABSTRACT
In this review, we provide an overview of our work in resistive switching mechanisms on oxide-based resistance random access memory (RRAM) devices. Based on the investigation of physical and chemical mechanisms, we focus on its materials, device structures, and treatment methods so as to provide an in-depth perspective of state-of-the-art oxide-based RRAM. The critical voltage and constant reaction energy properties were found, which can be used to prospectively modulate voltage and operation time to control RRAM device working performance and forecast material composition. The quantized switching phenomena in RRAM devices were demonstrated at ultra-cryogenic temperature (4K), which is attributed to the atomic-level reaction in metallic filament. In the aspect of chemical mechanisms, we use the Coulomb Faraday theorem to investigate the chemical reaction equations of RRAM for the first time. We can clearly observe that the first-order reaction series is the basis for chemical reaction during reset process in the study. Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device. As for its materials, silicon oxide is compatible to semiconductor fabrication lines. It is especially promising for the silicon oxide-doped metal technology to be introduced into the industry. Based on that, double-ended graphene oxide-doped silicon oxide based via-structure RRAM with filament self-aligning formation, and self-current limiting operation ability is demonstrated. The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process. Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

No MeSH data available.


Uniform resistive switching with current self-limiting property of double-ended graphene oxide RRAM under AC test.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4388104&req=5

Fig20: Uniform resistive switching with current self-limiting property of double-ended graphene oxide RRAM under AC test.

Mentions: The double-ended GO triple switching layer structure possesses instinctive ability to restrict multi-filament growth that may lead to multi-switching points. The multi-filament formation reflects on the electrical characteristics as instable current-voltage curve, especially in the reset process and HRS [67]. Moreover, it is notable to mention the current compliance graphene oxide flake in top GO:SiO2 layer. Due to its finite size which defines the maximal flux of electrons, current is restricted automatically, making it easier to avoid the filament over-formation and excessive rupture. Also, it is quite normal for single layer RRAM, especially for the metal or metal oxide-based RRAM, to exhibit unstable HRS and over-shooting phenomenon in LRS, owing to the stochastic rupture of metal filament and excessive accumulation of metal precipitates, respectively [67,132]. Furthermore, the more frequent the filament over formation/rupture happens, the more unstable the current-voltage curve within, thus making it much more possible for RRAM device breakdown and degrading in continuous write/erase process. Therefore, by combining the current self-limiting property and uniform conductive path formation ability, the two-sided GO structure RRAM can undoubtedly achieve the goal of uniform resistive switching and this is confirmed by AC pulse switch test shown in FigureĀ 20. From the testing result, the switching process of the two-sided GO structure device shows outstanding uniformity and stability even in the conventional rough unstable reset region.Figure 20


Physical and chemical mechanisms in oxide-based resistance random access memory.

Chang KC, Chang TC, Tsai TM, Zhang R, Hung YC, Syu YE, Chang YF, Chen MC, Chu TJ, Chen HL, Pan CH, Shih CC, Zheng JC, Sze SM - Nanoscale Res Lett (2015)

Uniform resistive switching with current self-limiting property of double-ended graphene oxide RRAM under AC test.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4388104&req=5

Fig20: Uniform resistive switching with current self-limiting property of double-ended graphene oxide RRAM under AC test.
Mentions: The double-ended GO triple switching layer structure possesses instinctive ability to restrict multi-filament growth that may lead to multi-switching points. The multi-filament formation reflects on the electrical characteristics as instable current-voltage curve, especially in the reset process and HRS [67]. Moreover, it is notable to mention the current compliance graphene oxide flake in top GO:SiO2 layer. Due to its finite size which defines the maximal flux of electrons, current is restricted automatically, making it easier to avoid the filament over-formation and excessive rupture. Also, it is quite normal for single layer RRAM, especially for the metal or metal oxide-based RRAM, to exhibit unstable HRS and over-shooting phenomenon in LRS, owing to the stochastic rupture of metal filament and excessive accumulation of metal precipitates, respectively [67,132]. Furthermore, the more frequent the filament over formation/rupture happens, the more unstable the current-voltage curve within, thus making it much more possible for RRAM device breakdown and degrading in continuous write/erase process. Therefore, by combining the current self-limiting property and uniform conductive path formation ability, the two-sided GO structure RRAM can undoubtedly achieve the goal of uniform resistive switching and this is confirmed by AC pulse switch test shown in FigureĀ 20. From the testing result, the switching process of the two-sided GO structure device shows outstanding uniformity and stability even in the conventional rough unstable reset region.Figure 20

Bottom Line: Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device.The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process.Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan.

ABSTRACT
In this review, we provide an overview of our work in resistive switching mechanisms on oxide-based resistance random access memory (RRAM) devices. Based on the investigation of physical and chemical mechanisms, we focus on its materials, device structures, and treatment methods so as to provide an in-depth perspective of state-of-the-art oxide-based RRAM. The critical voltage and constant reaction energy properties were found, which can be used to prospectively modulate voltage and operation time to control RRAM device working performance and forecast material composition. The quantized switching phenomena in RRAM devices were demonstrated at ultra-cryogenic temperature (4K), which is attributed to the atomic-level reaction in metallic filament. In the aspect of chemical mechanisms, we use the Coulomb Faraday theorem to investigate the chemical reaction equations of RRAM for the first time. We can clearly observe that the first-order reaction series is the basis for chemical reaction during reset process in the study. Furthermore, the activation energy of chemical reactions can be extracted by changing temperature during the reset process, from which the oxygen ion reaction process can be found in the RRAM device. As for its materials, silicon oxide is compatible to semiconductor fabrication lines. It is especially promising for the silicon oxide-doped metal technology to be introduced into the industry. Based on that, double-ended graphene oxide-doped silicon oxide based via-structure RRAM with filament self-aligning formation, and self-current limiting operation ability is demonstrated. The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process. Besides, we have also adopted a new concept of supercritical CO2 fluid treatment to efficiently reduce the operation current of RRAM devices for portable electronic applications.

No MeSH data available.